Nov. 29 – Graph Traversal (DFS)
Wade Fagen-Ulmschneider
Traversals of a graph using BFS:

<table>
<thead>
<tr>
<th>d</th>
<th>p</th>
<th>Adjacent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>A C B D</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>B A C E</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>C B A D E F</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>D A C F H</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>E B C G</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>F C D G</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>G E F H</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>H D G</td>
</tr>
</tbody>
</table>
BFS(G):
 Input: Graph, G
 Output: A labeling of the edges on G as discovery and cross edges

 foreach (Vertex v : G.vertices()):
 setLabel(v, UNEXPLORED)
 foreach (Edge e : G.edges()):
 setLabel(e, UNEXPLORED)
 foreach (Vertex v : G.vertices()):
 if getLabel(v) == UNEXPLORED:
 BFS(G, v)

BFS(G, v):
 Queue q
 setLabel(v, VISITED)
 q.enqueue(v)
 while !q.empty():
 v = q.dequeue()
 foreach (Vertex w : G.adjacent(v)):
 if getLabel(w) == UNEXPLORED:
 setLabel(v, w, DISCOVERY)
 setLabel(w, VISITED)
 q.enqueue(w)
 elseif getLabel(v, w) == UNEXPLORED:
 setLabel(v, w, CROSS)
BFS Analysis

Q: Does our implementation handle disjoint graphs? If so, what code handles this?
 • How do we use this to count components?

Q: Does our implementation detect a cycle?
 • How do we use this to count components?

Q: What is the running time?
Running time of BFS

While-loop at : 19?

For-loop at : 21?
BFS(G):

Input: Graph, G
Output: A labeling of the edges on G as discovery and cross edges

foreach (Vertex v : G.vertices()):
 setLabel(v, UNEXPLORED)
foreach (Edge e : G.edges()):
 setLabel(e, UNEXPLORED)
foreach (Vertex v : G.vertices()):
 if getLabel(v) == UNEXPLORED:
 BFS(G, v)

BFS(G, v):

 Queue q
 setLabel(v, VISITED)
 q.enqueue(v)
 while !q.empty():
 v = q.dequeue()
 foreach (Vertex w : G.adjacent(v)):
 if getLabel(w) == UNEXPLORED:
 setLabel(v, w, DISCOVERY)
 setLabel(w, VISITED)
 q.enqueue(w)
 elseif getLabel(v, w) == UNEXPLORED:
 setLabel(v, w, CROSS)
BFS Observations

Q: What is a shortest path from A to H?

Q: What is a shortest path from E to H?

Q: How does a cross edge relate to d?

Q: What structure is made from discovery edges?
BFS Observations

Obs. 1: Traversals can be used to count components.

Obs. 2: Traversals can be used to detect cycles.

Obs. 3: In BFS, d provides the shortest distance to every vertex.

Obs. 4: In BFS, the endpoints of a cross edge never differ in distance, d, by more than 1:

$$|d(u) - d(v)| = 1$$
Traversal: DFS
BFS(G):
Input: Graph, G
Output: A labeling of the edges on G as discovery and cross edges

foreach (Vertex v : G.vertices()):
 setLabel(v, UNEXPLORED)

foreach (Edge e : G.edges()):
 setLabel(e, UNEXPLORED)

foreach (Vertex v : G.vertices()):
 if getLabel(v) == UNEXPLORED:
 BFS(G, v)

BFS(G, v):
Queue q
setLabel(v, VISITED)
q.enqueue(v)

while !q.empty():
 v = q.dequeue()
 foreach (Vertex w : G.adjacent(v)):
 if getLabel(w) == UNEXPLORED:
 setLabel(v, w, DISCOVERY)
 setLabel(w, VISITED)
 q.enqueue(w)
 elseif getLabel(v, w) == UNEXPLORED:
 setLabel(v, w, CROSS)
DFS(G):
Input: Graph, G
Output: A labeling of the edges on G as discovery and back edges

foreach (Vertex v : G.vertices()):
 setLabel(v, UNEXPLORED)

foreach (Edge e : G.edges()):
 setLabel(e, UNEXPLORED)

foreach (Vertex v : G.vertices()):
 if getLabel(v) == UNEXPLORED:
 DFS(G, v)

DFS(G, v):
Queue q
setLabel(v, VISITED)
q.enqueue(v)

while !q.empty():
 v = q.dequeue()

 foreach (Vertex w : G.adjacent(v)):
 if getLabel(w) == UNEXPLORED:
 setLabel(v, w, DISCOVERY)
 setLabel(w, VISITED)
 DFS(G, w)
 elseif getLabel(v, w) == UNEXPLORED:
 setLabel(v, w, BACK)
Running time of DFS

Labeling:
- Vertex:
- Edge:

Queries:
- Vertex:
- Edge:
Exam 11 (theory) is ongoing
More Info: https://courses.engr.illinois.edu/cs225/fa2017/exams/

MP7: The final MP!
Extra Credit (+14): Monday, Dec. 4 at 11:59pm
Due: Monday, Dec. 11 at 11:59pm

Lab: lab_graphs starts today
lab_dict: Due Today @ 7pm (Before the first lab!)
lab_graphs: Due Sunday @ 11:59pm

New POTDs every M/W/F
Worth +1 Extra Credit /problem (up to +40 total)