Nov. 6 – Heap Operations
Wade Fagen-Ulmschneider
template <class T>
void Heap<T>::_insert(const T & key) {
 // Check to ensure there's space to insert an element
 // ...if not, grow the array
 if (size_ == capacity_) { _growArray(); }

 // Insert the new element at the end of the array
 item_[++size] = key;

 // Restore the heap property
 _heapifyUp(size);
}
Exam Updates

Exam 9 (theory) is live!

Exam 10 is a programming exam:
• MPs: mp5
• Labs: lab_btree, lab_hash
• Lecture: Hashing Implementation (eg: Double Hashing)
 Heap Implementation
ICPC Regionals

UIUC’s ICPC Team at Regionals:
• We took 5 teams: our top three places 1st, 3rd, and 6th
• It’s not too late to join IPL
 • Mondays, 7pm – 9pm
removeMin
removeMin

template <class T>
void Heap<T>::_removeMin() {
 // Swap with the last value
 T minValue = item_[1];
 item_[1] = item_[size_];
 size--;
 // Restore the heap property
 heapifyDown();
 // Return the minimum value
 return minValue;
}
template <class T>
void Heap<T>::_removeMin() {
 // Swap with the last value
 T minValue = item_[1];
 item_[1] = item_[size_-];
 size--;

 // Restore the heap property
 _heapifyDown();

 // Return the minimum value
 return minValue;
}

template <class T>
void Heap<T>::_heapifyDown(int index) {
 if (!_isLeaf(index)) {
 T minChildIndex = _minChild(index);
 if (item_[index] ___ item_[minChildIndex]) {
 std::swap(item_[index], item_[minChildIndex]);
 _heapifyDown(________________);
 }
 }
}

Array Abstractions
buildHeap
1. Sort the array – it’s a heap!

2. template <class T>
 void Heap<T>::buildHeap() {
 for (unsigned i = 0; i <= size_; i++) {
 heapifyUp(i);
 }
 }

3. template <class T>
 void Heap<T>::buildHeap() {
 for (unsigned i = parent(size); i > 0; i--) {
 heapifyDown(i);
 }
 }
Theorem: The running time of buildHeap on array of size n is: _______.

Strategy:
- We know that constant work is done based on the distance a node is away from the root (eg: it’s height).
- Therefore, the running time is proportional to the sum of the heights of the heights of all the nodes.
- We will work towards creating a proof around the sum of the heights of all the nodes.
Proving buildHeap Running Time

$S(h)$: Sum of the heights of all nodes in a complete tree of height h.

$S(0) =$

$S(1) =$

$S(h) =$
Proving buildHeap Running Time

Proof the recurrence:
 Base Case:

General Case:
Proving buildHeap Running Time

No one cares about things in terms of height:

\[S(h): \]

Since \(h \leq \lg(n) \):

\[\text{RunningTime}(n) \leq \]
Heap Sort

Running Time?

Why do we care about another sort?
A(nother) throwback to CS 173...

Let R be an equivalence relation on us where $(s, t) \in R$ if s and t have the same favorite among:

$$\{ __, __, __, __, __, __, \}$$
CS 225 – Things To Be Doing

Register for CS 225’s Final Exam!

Exam 9 (theory) is live!
More Info: https://courses.engr.illinois.edu/cs225/fa2017/exams/

MP5 is due tonight (grace period through tomorrow)
Due Monday, Nov. 6 at 11:59pm

New lab on Wednesday!
Due Sunday, Nov. 12 at 11:59pm

POTD
Every Monday-Friday – Worth +1 Extra Credit /problem (up to +40 total)