CS 225

Data Structures

Oct. 16 – AVL Operations
AVL Tree Rotations

Four templates for rotations:
Height-Balanced Tree

Height balance: \(b = \text{height}(T_R) - \text{height}(T_L) \)
Exams

Current Exam: Exam 6 (Programming)

Next Week: Exam 7 (Theory)

- **Topics:**
 - **Trees:** Binary, Binary Search, AVL Rotations
 - Iterators
 - Functors
 - MP 3
 - Huffman Encoding

- **A study guide will be released in the next few days**
Theorem:
If an insertion occurred in subtrees t_3 or t_4 and a subtree was detected at t, then a __________ rotation about t restores the balance of the tree.

We gauge this by noting the balance factor of t->right is _____.

Finding the Rotation
Theorem:
If an insertion occurred in subtrees t_2 or t_3 and a subtree was detected at t, then a __________ rotation about t restores the balance of the tree.

We gauge this by noting the balance factor of t->right is _______.

Finding the Rotation
Insertion into an AVL Tree

Insert (pseudo code):
1: Insert at proper place
2: Check for imbalance
3: Rotate, if necessary
4: Update height

```c
struct TreeNode {
    T key;
    unsigned height;
    TreeNode *left;
    TreeNode *right;
};
```

_insert(6.5)
template <class T> void AVLTree<T>::_insert(const T & x, treeNode<T> * & t) {
 if (t == NULL) {
 t = new TreeNode<T>(x, 0, NULL, NULL);
 }

 else if (x < t->key) {
 _insert(x, t->left);
 int balance = height(t->right) - height(t->left);
 int leftBalance = height(t->left->right) - height(t->left->left);
 if (balance == -2) {
 if (leftBalance == -1) { rotate___________(t); }
 else { rotate___________(t); }
 }
 }

 else if (x > t->key) {
 _insert(x, t->right);
 int balance = height(t->right) - height(t->left);
 int rightBalance = height(t->right->right) - height(t->right->left);
 if (balance == 2) {
 if (rightBalance == 1) { rotate___________(t); }
 else { rotate___________(t); }
 }
 }

 t->height = 1 + max(height(t->left), height(t->right));
}
Height-Balanced Tree

Height balance: \(b = \text{height}(T_R) - \text{height}(T_L) \)
AVL Tree Analysis

We know: insert, remove and find runs in: __________.

We will argue that: $h = __________.$
AVL Tree Analysis

Definition of big-O:

...or, with pictures:
CS 225 – Things To Be Doing

Exam 6 (Programming, Lists/Trees) is ongoing!
More Info: https://courses.engr.illinois.edu/cs225/fa2017/exams/

MP4: Available now!
Due: Monday, Oct. 23 at 11:59pm

Labs
New lab on Wednesday

POTD
Every Monday-Friday – Worth +1 Extra Credit /problem (up to +40 total)