Motivation

Can we always fit our data in main memory?

Where else do we keep our data?

BTree Motivations

Knowing that we have long seek times for data, we want to build a data structure with two (related) properties:

1.
2.

BTree

AVL Operations on Disk:

How deep do AVL trees get?

Example #2:
BTree Properties

For a BTree of order m:
1. All keys within a node are ordered.
2. All leaves contain no more than $m-1$ nodes.
3. All internal nodes have exactly **one more key than children**.
4. Root nodes can be a leaf or have $[2, m]$ children.
5. All non-root, internal nodes have $[\lceil m/2 \rceil, m]$ children.
6. All leaves are on the same level.

BTree Search

```
bool Btree::_exists(BTreeNode & node, const K & key) {
    unsigned i;
    for (i=0; i<node.keys_ct_ && key<node.keys_[i]; i++) { }
    if ( i < node.keys_ct_ && key == node.keys_[i] ) {
        return true;
    }
    if ( node.isLeaf() ) {
        return false;
    } else {
        BTreeNode nextChild = node._fetchChild(i);
        return _exists(nextChild, key);
    }
}
```

BTree Analysis

The height of the BTree determines maximum number of ________ possible in search data.

...and the height of our structure:

Therefore, the number of seeks is no more than: ____________.

...suppose we want to prove this!

BTree Setup

In our AVL Analysis, we saw finding an upper bound on the height (given n) is the same as finding a lower bound on the nodes (given h).

Goal: We want to find a relationship for BTrees between the number of keys (n) and the height (h).

CS 225 – Things To Be Doing:

1. Exam #7 is live!
2. MP4 due tonight
3. New lab coming Wednesday!
4. Daily POTDs