Removing an element from a BST:

_remove(40)
_remove(25)
_remove(10)
_remove(13)

<table>
<thead>
<tr>
<th>One-child Remove</th>
<th>Two-child remove</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BST Analysis:

Every operation we have studied on a BST depends on:

...what is this in terms of the amount of data, \(n \)?

Proving the relationship between \(h \) and \(n \):

Q: What is the maximum number of nodes in a tree of height \(h \)?

BST.cpp

```cpp
template <class K, class V>
void BST::_remove(TreeNode *& root, const K & key) {
```
Q: What is the minimum number of nodes in tree of height h?

Final BST Analysis

For every height-based algorithm on a BST:

Lower Bound:

Upper Bound:

Why use this over a linked list?

Q: How does our data determine the height?

1 3 2 4 5 7 6 vs. 4 2 3 6 7 5

Q: How many different ways are there to insert data into a BST?

Q: What is the average height of every arrangement?

Height Balance on BST

What tree makes you happier?

We define the **height balance** (b) of a BST to be:

We define a BST tree T to be **height balanced** if:

CS 225 – Things To Be Doing:

1. Exam #5 live now! (Theory Exam: lists, stacks, queues)
2. MP4 out today, due Monday after next
3. Labs start today, due Sunday
4. Daily POTDs