
Introduction Lists Vectors ISeq End-Notes

Course Introduction

Mattox Beckman

University of Illinois at Urbana-Champaign

Department of Computer Science

Introduction Lists Vectors ISeq End-Notes

Objectives
You should be familiar with...

I the basic list operations,

I the basic vector operations,

I the basic hash-map operations,

I ISeq, and
I sets.

Introduction Lists Vectors ISeq End-Notes

The purpose...

I Clojure in Real LifeTM will use these built-in structures

extensively.

I We will use them in this course sporadically.

I Your goal today: be introduced.

I Your goal eventually: be annoyed with languages that don’t include

these.

Introduction Lists Vectors ISeq End-Notes

Why they are special

I Most languages contain these already: as library calls.

Hashtable balance = new Hashtable();
balance.put("Zara", new Double(3434.34));
balance.put("Mahnaz", new Double(123.22));
balance.put("Daisy", new Double(99.22));
balance.put("Qadir", new Double(-19.08));

I Clojure has literal syntax to express these.

1 (def balance {"Zara" 3434.34, "Mahnaz" 123.22,
2 "Daisy" 99.22, "Qadir" -19.08})



Introduction Lists Vectors ISeq End-Notes

Creating Lists

I Create empty list with '(), or sometime nil.
I Create whole lists using list or use the literal form.

1 (list 1 2 3)
2 ;; => '(1 2 3)
3 '(1 2 3)
4 ;; => '(1 2 3)
5 (list (+ 1 2) (* 3 4))
6 ;; => (3 12)

I Add to lists using cons

1 (cons (* 2 3) '(1 3 6))
2 ;; => (6 1 3 6)

Introduction Lists Vectors ISeq End-Notes

Accessing List Elements

I Get the first element with first (like car from other Lisps).

I Get the rest of the elements with rest.
I Get a specific element with nth.
I Is the list empty? Use empty?

1 (def x '(1 2 3))
2 (empty? x)
3 ;; => false
4 (first x)
5 ;; => 1
6 (rest x)
7 ;; => (2 3)
8 (nth x 2)
9 ;; => 3

Introduction Lists Vectors ISeq End-Notes

Other things

I Lists are used frequently, so there aremany operations for them.

I You will see map, some, filter, apply, and reduce a lot.

1 (some odd? x)
2 ;; => true
3 (apply + x)
4 ;; => 6
5 (filter odd? x)
6 ;; => (1 3)
7 (reduce * 1 x)
8 ;; => 6
9 (map inc x)

10 ;; => (2 3 4)

Introduction Lists Vectors ISeq End-Notes

Creating Vectors

I Similar to arrays, but some major differences!

I Create them using the vector function.

I Convert another structure to a vector with vec.
I Use square brackets as literal syntax.

1 (vector 1 2 3)
2 ;; => [1 2 3]
3 (vector '(1 2 3))
4 ;; => [(1 2 3)]
5 (vec '(1 2 3))
6 ;; => [1 2 3]
7 [1 2 3]
8 ;; => [1 2 3]



Introduction Lists Vectors ISeq End-Notes

Accessing Vector Parts

1 (def v [1 2 3 5 8])
2 ;; => #'user/v
3 (empty? v)
4 ;; => false
5 (count v)
6 ;; => 5
7 (v 4)
8 ;; => 8
9 (conj v 2)

10 ;; => [1 2 3 5 8 2]

Introduction Lists Vectors ISeq End-Notes

Vector Operations

I The list operations will work on vectors.

I Use the vector-specific versions if you want to preserve

“vectorness.”

1 (map inc v)
2 ;; => (2 3 4 6 9)
3 (mapv inc v)
4 ;; => [2 3 4 6 9]
5 (apply + v)
6 ;; => 19

Introduction Lists Vectors ISeq End-Notes

Sequences

I Many ofClojure’s data structures are instances of Sequence.

I Provides: first, rest, empty?, count, map, etc.
I Advantage: uniformity; Disadvantage: unwanted format changes.

I Usually a good trade.

1 (map inc v)
2 ;; => (2 3 4 6 9)
3 (map inc s1)
4 ;; => (2 3 4 5)
5 (for [x s1] (* x 2))
6 ;; => (2 4 6 8)
7 (for [x v] (* x 2))
8 ;; => (2 4 6 10 16)

Introduction Lists Vectors ISeq End-Notes

Credits

I The Java hash table example is from the Tutorials Point web site.

More examples can be found at

http://www.tutorialspoint.com/java/java_hashtable_class.htm.

I Can you tell which operating system they used to host their site?


