Announcements

MP5 available, due 10/31, 11:59p.

AVL trees:

```c
struct treeNode {
    T key;
    int height;
    treeNode * left;
    treeNode * right;
};
```

Insert:

- insert at proper place
- check for imbalance
- rotate if necessary
- update height
template <class T>
void AVLTree<T>::insert(const T & x, treeNode<T> * & t) {
 if (t == NULL) t = new treeNode<T>(x, 0, NULL, NULL);
 else if (x < t->key) {
 insert(x, t->left);
 int balance = height(t->right) - height(t->left);
 int leftBalance = height(t->left->right) - height(t->left->left);
 if (balance == -2)
 if (leftBalance == -1)
 rotate___________(t);
 else
 rotate___________(t);
 } else if (x > t->key) {
 insert(x, t->right);
 int balance = height(t->right) - height(t->left);
 int rightBalance = height(t->right->right) - height(t->right->left);
 if (balance == 2)
 if (rightBalance == 1)
 rotate___________(t);
 else
 rotate___________(t);
 }
 t->height = max(height(t->left), height(t->right)) + 1;
}
AVL tree removal:
AVL tree analysis:

Since running times for Insert, Remove and Find are $O(h)$, we’ll argue that $h = O(\log n)$.

• Defn of big-O:

• Draw two pictures to help us in our reasoning:

• Putting an upper bound on the height for a tree of n nodes is the same as putting a lower bound on the number of nodes in a tree of height h.
AVL tree analysis:

Putting an upper bound on the height for a tree of \(n \) nodes is the same as putting a lower bound on the number of nodes in a tree of height \(h \).

- Define \(N(h) \):

- Find a recurrence for \(N(h) \):

- We simplify the recurrence:

- Solve the recurrence: (guess a closed form)
AVL tree analysis: prove your guess is correct.

- Thm: An AVL tree of height h has at least $2^{h/2}$ nodes, ________.

Consider an arbitrary AVL tree, and let h denote its height.

Case 1: _______

Case 2: _______

Case 3: _______ then, by an Inductive Hypothesis that says ____________________________, and since ____________________________, we know that ____________________________.

Punchline:
Classic balanced BST structures:

- Red-Black trees – max ht $2\log_2 n$.

 Constant # of rotations for insert, remove, find.
- AVL trees – max ht $1.44\log_2 n$.

 $O(\log n)$ rotations upon remove.

Balanced BSTs, pros and cons:

- Pros:
 - Insert, Remove, and Find are always $O(\log n)$
 - An improvement over:
 - Range finding & nearest neighbor
- Cons:
 - Possible to search for single keys faster
 - If data is so big that it doesn’t fit in memory it must be stored on disk and we require a different structure.