Announcements

Trees:

“... most important nonlinear structure in computer science.”
-- Donald Knuth, *Art of Computer Programming Vol 1*

A tree: __

We’ll study more specific trees:
Tree terminology:

• What’s the longest English word you can make using the vertex labels in the tree (repeats allowed)?

• Find an edge that is not on the longest path in the tree. Give that edge a reasonable name.

For the rest of the exercises, assume the tree is rooted.

• One of the vertices is called the “root” of the tree. Guess which one it is.

• Make an English word containing the names of the vertices that have a parent but no sibling.

• How many parents does each vertex have?

• Which vertex has the fewest children?

• Which vertex has the most ancestors?

• Which vertex has the most descendants?

• List all the vertices is b’s left subtree.

• List all the leaves in the tree.
A rooted tree:
Binary tree, recursive definition:

A binary tree T is either

- OR

- OR
An (important) example of a function on a binary tree:
height(t) -- length of longest path from root to a leaf

Given a tree T, write a recursive defn of the height of T, height(T):
Full Binary tree: a tree in which every node has 2 or 0 children

\[F \text{ is a full binary tree if and only if:} \]

\[\bullet F = \emptyset \text{ OR,} \]

\[\bullet F = \{ r, T_L, T_R \}, \text{ and} \]
Perfect Binary tree:

Perfect tree of height h, P_h:

- P_{-1} is an empty tree
- if $h > -1$, then P_h is $\{r, T_L, T_R\}$, where T_L and T_R are P_{h-1}.

P_0:

P_1:

P_2:

Check for understanding:

How many nodes in a perfect tree of height h?