Lecture Worksheet The second step to a recursive solution is the base case:
205| November 17, 2015 2. Base Case: When no cities remain in the unused list, return
the distance and the path.
3. Reduction: When multiple results are returned, return the
minimum of all the results.

Generating Permutations: Recursive Solution
Last time, we generated a distances matrix that contained the
distances from cities in our input:

1{ "path": [NYC, CHI, SFO],

distances New York, NY | Chicago, IL | San Francisco, CA "dist": 4,699,321 }
New York, NY 0| 1,271,382 4,677,494
Chicago, IL 1,270,079 0 3,431,581 [NYC] | [CHI,SFO]
San Francisco, CA 4,675,822 | 3,429,242 0

As a reminder, we set this up as a dictionary of dictionaries so that we
can access any distance with the following code:

distances["New York, NY"]["Chicago, IL"]

The puzzle that we left with is how we generate every permutation?
To set up this problem, we will use a reclusive function with two
arguments:

e path: The current path through the graph (as a List)

¢ unused: The cities not part of the current path (as a List)

Every recursive solution almost always has three components:

1. Recursive Case: If there is at least one unused city, loop
through all the unused cities. For each of these unused cities,
make a recursive call with the city appended to the end of the
path list and removed from the unused list.

Visually, we can represent the recursive step as the following tree:

[[1] [NvccHILSFO] |
[INYC) [[cHIL,sFO] | | [cHI | [;\IYC,SFO] | |1sFol| [Nvc cHIT |
[[nve,cHil [(sFo1] | INYC,sFO] | [cHIT| | [cHL,NYC] | [SFOT| ..
[(nvc cHLsFo [[1] [INvcsFo,cHIl [1] | [cH, NG sFOl | (1] 1

/_/\

[NYC,CHI] | [SFO] [NYC,SFO] | [CHI]

y 3 rF 3
{ "path”: [NYC, CHI, SFO],
"dist"; 4,699,321 }

[NYC,CHI,SFO] | []

{ "path": [NYC, SFO, CHI],
“dist": 8,107,403 }

[NYC,SFO, CHI] | []

Let’'s program the makePath function to complete this recursion:

def makePath(path, unused, distances):
if len(unused) ==
Base case

else:
Reduction result
min = None

Reclusive Case
for city in unused:

return min

