Proofs, Number Theory

June 18, 2014

Yesterday

- To prove a universal (\forall) statement, state the hypothesis, use definitions, and manipulate expressions until you verify the conclusion.
- To prove an existential (\exists) statement, just give an example.
- To disprove a statement, prove the negation.
- Try rephrasing the claim or breaking things down into cases if you're stuck.

Proof by contrapositive

Proposition

If a and b are integers and $a+b \geq 15$, then either $a \geq 7$ or $b \geq 8$

Contrapositive

$\forall a, b \in \mathbb{Z}, \neg(a \geq 7 \vee b \geq 8) \rightarrow \neg(a+b \geq 15)$.
(1) We must show

$$
\forall a, b \in \mathbb{Z},(\neg(a \geq 7) \wedge \neg(b \geq 15)) \rightarrow \neg(a+b \geq 15)
$$

(2) \ldots or $\forall a, b \in \mathbb{Z},(a<7 \wedge b<8) \rightarrow a+b<15)$.

Proof: If $a<7$ and $b<8$, then $a+b<7+8=15$.

Proving bi-conditionals

To prove " P if and only if Q," we must prove both "if P, then Q " and "if Q then P."

Proposition

For all integers $k, k^{2}+4 k+6$ is odd if and only if k is odd.
Proof:

Working backwards

Proposition

If x and y are positive real numbers, then $\frac{x+y}{2} \geq \sqrt{x y}$.
Proof:

Statements with both \forall and \exists

Proposition

For all real numbers x and y, if x and y are positive, then there exists a real number z such that $x=y z$.

Proof:

Proposition

There exists $n \in \mathbb{N}$ such that for all $m \in \mathbb{N}$, we have $10 n \leq m$.
Proof:

Things to prove or disprove

- For any integers j and k, if j is even or k is even, then $j k$ is even.
- Disprove: If k is rational, then k^{3} / k is rational.
- If m and n are integers and perfect cubes, then $m n$ is a perfect cube.

Number theory

- Number theory is the study of integers.
- "Mathematics is the queen of the sciences and number theory is the queen of mathematics." - Carl Friedrich Gauss

Divisibility

Definition

If a and b are integers and $b=a n$ for some integer n, then a divides b, a is a factor of b, and b is a multiple of a.

- Notation: $a \mid b$.
- Example: $7|0,3| 12,-3|12,3|-12,-3 \mid-12$.
- Non-example: $0 \nmid 7,6 \nmid 10$

Divisibility

Proposition

If a, b, and c are integers, $a \mid b$, and $b \mid c$, then $a \mid c$.
Example: $3|15,15| 30$, and $3 \mid 30$ Proof:

Divisibility

Proposition

If a, b, and c are integers, $a \mid b$, and $a \mid c$, then $a \mid(b+c)$.
Example: $4|8,4| 40$, and $4 \mid 48$.
Proof:

Division Algorithm

Theorem

If $a \in \mathbb{Z}$ and $b \in \mathbb{Z}^{+}$, then there exists a unique pair of integers $q, r \in \mathbb{Z}$ such that $a=b q+r$ and $0 \leq r<b$.
"Unique" means that there is only one such pair q, r.

Definition

In the above theorem, q is the quotient and r is the remainder.
Notation: $q=a \operatorname{div} b$ and $r=a \bmod b$.
Example: If $a=98$ and $b=10$, then $q=9$ and $r=8$.
Proof of theorem: Let $q=\lfloor a / b\rfloor$ and $r=a-b q \ldots$

Greatest common divisor

Definition

If a and b are natural numbers, the greatest common divisor (GCD) of a and b, denoted $\operatorname{gcd}(a, b)$, is the largest number that divides both a and b.

Definition

Natural numbers a and b are relatively prime if $\operatorname{gcd}(a, b)=1$.
Note: In this class, 0 is a natural number.
Examples:
$\operatorname{gcd}(4,12)=\operatorname{gcd}(12,4)=\operatorname{gcd}(-4,12)=\operatorname{gcd}(-12,4)=4$, $\operatorname{gcd}(20,0)=20$.

GCD example

Definition

A positive integer $p \geq 2$ is prime if its only positive factors are itself and 1.

To find $\operatorname{gcd}(180,48)$, find prime factorizations of 180 and of 48 , and see what's in common...
...but in general, finding factors takes too long.

Euclid's Algorithm

Assume $a \geq b$.
EuclidAlg(a,b)

- If $b=0$
- Return a
- Else
- Return EuclidAlg $(b, a \bmod b)$

Reminder: $a \bmod b$ is the remainder when a is divided by b. Example: Find $\operatorname{gcd}(662,414)$

