1. **Graphs** [5 points]

 Suppose a simple graph \(G \) with \(n \) nodes (\(n > 1 \)) has a node of degree \(n - 1 \). Then what can you say about the diameter of \(G \)? Choose one.

- □ A. equals 1 [2 points]
- □ B. equals 2 [2 points]
- ✔ C. equals 1 or 2 [2 points]
- □ D. equals 1 if \(G \) is connected, but it is possible that \(G \) is not connected
- □ E. none of the above is necessarily true

2. **Functions** [5 points]

 Let \(f : \mathbb{R} \to \mathbb{R} \) be a monotonically increasing function and \(g : \mathbb{R} \to \mathbb{R} \) be a monotonically decreasing function. That is, \(\forall x, y \in \mathbb{R}, x \geq y \rightarrow (f(x) \geq f(y) \land g(x) \leq g(y)) \). Then which of the functions below are monotonically decreasing? Choose all the correct options.

 [Hint: If the answer is not clear to you, you may want to try working with examples.]

- ✔ A. \(f \circ g \) [2 points]
- ✔ B. \(g \circ f \) [2 points]
- □ C. \(f \circ f \) [0.5 points for not marking (0 if no markings)]
- □ D. \(g \circ g \) [0.5 points for not marking (0 if no markings)]
- □ E. None of the above [total 1 point (if none above marked)]

3. **Recurrence Relation** [5 points]

 Which of the following recurrences describe(s) a polynomial function of \(n \)? (A polynomial function has the form \(\Theta(n^c) \) for some constant \(c \).) Choose all the correct answers.

- □ A. \(A(1) = A(2) = 1; \text{ for } n > 2, A(n) = A([n/2]) + n\log n \) [1 point if only this selected]
- □ B. \(B(1) = B(2) = 1; \text{ for } n > 2, B(n) = 2B(n - 1) + 1 \) [1 point if only this selected]
- □ C. \(C(1) = C(2) = 1; \text{ for } n > 2, C(n) = C(n - 1) + C(n - 2) \) [1 point if only this selected]
- ✔ D. \(D(1) = D(2) = 1; \text{ for } n > 2, D(n) = D(n - 1) + n \) [5 - \(x \) points, if \(x \) other options selected]
- □ E. None of the above [2 points (0 if no markings)]
4. **Induction**

Let us define a function $P : \mathbb{N} \rightarrow \mathbb{N}$ as follows:

$$
P(0) = 2 \\
P(1) = 1 \\
P(n) = P(n - 1) + 6P(n - 2) \quad \text{for } n \geq 2.
$$

Use induction to prove that $P(n) = 3^n + (-2)^n$ for every integer $n \geq 0$.

Base case or cases:

Solution: We verify that $3^0 + (-2)^0 = 1 + 1 = 2 = P(0)$ and $3^1 + (-2)^1 = 3 - 2 = 1 = P(1)$.

Inductive hypothesis:

Solution: Suppose there exists an integer $k > 1$ such that for all $n \in \mathbb{N}$, $n \leq k$, $P(n) = 3^n + (-2)^n$.

The inductive step:

Solution: Then, we shall prove that $P(k + 1) = 3^{k+1} + (-2)^{k+1}$.

By the recursive definition, $P(k + 1) = P(k) + 6P(k - 1)$. Since $k > 1$, we have $k, k - 1 \geq 0$. Also $k, k - 1 \leq k$. Hence, by the induction hypothesis, $P(k) = 3^k + (-2)^k$ and $P(k - 1) = 3^{k-1} + (-2)^{k-1}$. Hence

$$
P(k + 1) = 3^k + (-2)^k + 6(3^{k-1} + (-2)^{k-1}) \\
= 3^k + (-2)^k + 2 \cdot 3^k - 3 \cdot (-2)^k \\
= (1 + 2) \cdot 3^k + (1 - 3)(-2)^k = 3^{k+1} + (-2)^{k+1}
$$

Hence, by induction, it follows that for all $n \in \mathbb{N}$, $P(n) = 3^n + (-2)^n$.

5. **Graph: Proof by Contradiction.**

In a simple graph G, a path P is said to be *maximal* if there is no other path P' in G such that P is contained in (i.e., a subgraph of) P'.

Prove that if P is a maximal path which ends at a node u, then $\text{degree}(u) \leq \text{length}(P)$.

[Hint: Use proof by contradiction.]

Solution:

Suppose, for the sake of contradiction, that there is a simple graph G with a maximal path P such that it ends in a node u with $\text{degree}(u) > \text{length}(P)$.

Let $P = (v_0, v_1, \ldots, v_\ell)$, so that $\ell = \text{length}(P)$ and $v_\ell = u$. Note that there are ℓ nodes in P other than u. Since $\text{degree}(u) > \ell$, at least one of the neighbors of u is a node $w \notin \{v_0, \ldots, v_\ell\}$. Then $P' = (v_0, v_1, \ldots, v_\ell, w)$ is a valid path and P is strictly contained in P. This contradicts the assumption that P is a maximal path!

Hence, we conclude that our hypothesis was wrong: a simple graph G cannot have a maximal path P which ends in a node u with $\text{degree}(u) > \text{length}(P)$. That is, for every maximal path P which ends at a node u, $\text{degree}(u) \leq \text{length}(P)$.
6. **Bijection.** [15 points]

Let A be the set of all infinitely long binary strings (with symbols from $\{0, 1\}$) and B be the set of all infinitely long ternary strings (with symbols from $\{0, 1, 2\}$). Show that there is a bijection between A and B.

[Hint: Give one-to-one functions in both directions.]

Solution:

Let $f : A \to B$ be the identity function. This is a well-defined function since $A \subseteq B$. It is also invertible and hence one-to-one.

Let $g : B \to A$ be defined as follows. Given a string $b_0b_1b_2\ldots$ in which each $b_i \in \{0, 1, 2\}$, let $g(b_0b_1b_2\ldots) = a_0a_1a_2\ldots$, where for each $i \in \mathbb{N}$

$$a_{2i}a_{2i+1} = \begin{cases} 00 & \text{if } b_i = 0 \\ 01 & \text{if } b_i = 1 \\ 10 & \text{if } b_i = 2 \end{cases}$$

g is invertible because, given $a_0a_1a_2\cdots = g(b_0b_1b_2\cdots)$, each b_i can be uniquely computed from the two bits $a_{2i}a_{2i+1}$; hence $b_0b_1b_2\ldots$ can be uniquely determined from $g(b_0b_1b_2\ldots)$.

Then by the Cantor-Schröder-Bernstein theorem, this implies that there is a bijection between A and B.
7. Design and Analysis of an Algorithm. [15 points]

The following recursive function finds the \(k \)-th smallest element in a given array \(A \). That is, if \(k = 1 \), it outputs the smallest element, and if \(k = |A| \), the largest element.

The algorithm calls a procedure \texttt{Split} which takes an array \(A \) and a number \(x \) and splits \(A \) into three arrays \((W, X, Y) \) such that \(W \) has those elements of \(A \) which are smaller than \(x \), \(Y \) has those elements of \(A \) which are greater than \(x \) and \(X \) has those elements of \(A \) which are equal to \(x \). So \(|A| = |W| + |X| + |Y| \). It is possible that one or more of the arrays \(W, X, Y \) are empty.

1: \textbf{function} \texttt{FindElement}(\texttt{A}: array of reals, \texttt{k}: int) \rightarrow \text{Find} \, k \text{th} \, \text{smallest} \, \text{element} \, \text{in} \, \text{array} \, \texttt{A}
2: \textbf{if} \, |\texttt{A}| < \texttt{k} \, \textbf{then} \rightarrow \text{\texttt{A} stands for the size of the array A}
3: \quad \textbf{return} \, \text{“error”}
4: \quad \textbf{x} := \texttt{A}[1] \rightarrow \text{x is the first element of A}
5: \quad (W, X, Y) := \texttt{Split}(\texttt{A}, \texttt{x}) \rightarrow \text{partitions A into 3 arrays as specified above}
6: \quad \textbf{if} \, |W| \geq \texttt{k} \, \textbf{then} \rightarrow \text{in this case the} \, k \text{th} \, \text{smallest element is in W}
7: \quad \quad \textbf{return} \, \texttt{FindElement}(\texttt{W, Expression}_1)
8: \quad \textbf{if} \, |W| + |X| < \texttt{k} \, \textbf{then} \rightarrow \text{in this case the} \, k \text{th} \, \text{smallest element is in Y}
9: \quad \quad \textbf{return} \, \texttt{FindElement}(\texttt{Y, Expression}_2)
10: \quad \textbf{return} \, \texttt{x} \rightarrow \text{if neither of the above two cases hold, the} \, k \text{th} \, \text{smallest element is in X}

(a) The algorithm is stated in terms of two expressions \texttt{Expression}_1 \, \text{and} \, \texttt{Expression}_2. \, \text{For the algorithm to be correct, what should they be, in terms of} \, |\texttt{A}|, |W|, |X|, |Y|, \, \texttt{k}.

i. \texttt{Expression}_1 = k. \quad \{4 \text{ points}\}

ii. \texttt{Expression}_2 = k - |W| - |X|. \quad \{4 \text{ points}\}

(b) If \texttt{Split}(\texttt{A}, \texttt{x}) \text{ takes time} \Theta(|\texttt{A}|), \text{ how much time does} \texttt{FindElement}(\texttt{A}, \texttt{k}) \text{ take in the worst case? Write your answer in the form} \Theta(f(|\texttt{A}|)). \text{ Briefly justify your answer.}

[Hint: To show a lower-bound, consider what happens if \texttt{A} \text{ is sorted in ascending order, and} \, k = |\texttt{A}|. \text{ To show this matches an upper-bound, note that} \max(\texttt{Expression}_1, \texttt{Expression}_2) \leq |\texttt{A}| - 1.]

\textbf{Solution:} \quad \{7 \text{ points}\}

Suppose \texttt{A} consists of \(n \) distinct elements, sorted in ascending order and \(k = n \). Then after the call to \texttt{Split}, \(|W| = 0 \) and \(|X| = 1 \), and the recursive call is to \texttt{FindElement}(\texttt{Y, k’t}), where \texttt{Y} could still be sorted in ascending order with \(|Y| = n - 1 \). Thus, the time taken, by the algorithm is given by the recurrence \(T(n) = \Theta(n) + T(n - 1) \) (and \(T(1) = \Theta(1) \)). Thus, \(T(n) = \Theta(n^2) \).

This is the worst possible, since in each level of recursion, the size of the array reduces by at least one.

\footnote{This is not the most efficient algorithm for this task. You will learn about more efficient ones in later courses.}
8. **State Diagram**

Design a deterministic finite state acceptor that accepts all binary strings which represent an even number, when interpreted as a number in base 3 as well as when interpreted as a number in base 2. (The empty string is interpreted as the number 0.)

For example, the string 110 is $2^2 + 2 + 0 = 6$ in base 2 and $3^2 + 3 + 0 = 12$ in base 3, and should be accepted. But the strings 10 (equals 3 in base 3) and 101 (equals 5 in base 2) should be rejected.

You machine will be given the input digit by digit, most-significant-digit first (i.e., left to right). The states of such a machine are shown below. Each state is labeled as (a, b) where $a \equiv x \pmod{2}$ and $b \equiv y \pmod{2}$, with x being the number seen so far in base 2, and y being the number seen so far in base 3. Thus, for example, after seeing the input 110, $x = 6, y = 12$ and hence the machine will be in state $(0, 0)$.

Add all the edges and clearly mark the labels on the edges. Remember to mark the start state and final state(s) using the standard convention in state diagrams.

[Hint: A number in base 3 is even iff it has an even number of 1s. A number in base 2 is even iff it ends in 0.]