1. Edges of the Hypercube

Recall that Q_n stands for the n-dimensional hypercube. Let α_n denote the number of edges in Q_n. Answer the following questions.

(a) Choose the correct recurrence relation defining α_n. [5 points]

- A. $\alpha_0 = 1$ and $\alpha_n = 2\alpha_{n-1} + 2^n$ for $n \geq 1$ [2 points]
- B. $\alpha_1 = 1$ and $\alpha_n = 2\alpha_{n-1}$ for $n \geq 2$ [1 point]
- C. $\alpha_1 = 0$ and $\alpha_n = 2\alpha_{n-1} + 2^n$ for $n \geq 2$ [1 point]
- D. $\alpha_0 = 0$ and $\alpha_n = 2\alpha_{n-1} + 2^{n-1}$ for $n \geq 1$ [1 point]

(b) Draw three levels of a recurrence tree for α_n, with α_{n-2} at the leaves. [5 points]

(c) The closed-form formula for α_n is $n \cdot 2^{n-1}$. [5 points]

2. How many nodes are there in a full-binary tree of depth d, if every internal node of the tree has at least one leaf node as a child? [5 points]

- A. $2^{d+1} - 1$
- B. $2^d + 1$
- C. $2d + 1$ [2 points]
- D. $d + 1$
- E. There is not enough information to uniquely determine an answer.
CS 173 (B), Spring 2015, Examlet 4, Part B

1. Edges of the Hypercube

Recall that Q_n stands for the n-dimensional hypercube. Let α_n denote the number of edges in Q_n. Answer the following questions.

(a) Choose the correct recurrence relation defining α_n. \[5 \text{ points}\]

□ A. $\alpha_0 = 1$ and $\alpha_n = 2\alpha_{n-1} + 2^n$ for $n \geq 1$ \[2 \text{ points}\]
□ B. $\alpha_1 = 1$ and $\alpha_n = 2\alpha_{n-1}$ for $n \geq 2$
□✓ C. $\alpha_0 = 0$ and $\alpha_n = 2\alpha_{n-1} + 2^{n-1}$ for $n \geq 1$
□ D. $\alpha_1 = 0$ and $\alpha_n = 2\alpha_{n-1} + 2^n$ for $n \geq 2$ \[1 \text{ points}\]

(b) Draw three levels of a recurrence tree for α_n, with α_{n-2} at the leaves. \[5 \text{ points}\]

(c) The closed-form formula for α_n is $n \cdot 2^{n-1}$. \[5 \text{ points}\]

2. How many nodes are there in a full-binary tree of depth d, if every internal node of the tree has at least one leaf node as a child? \[5 \text{ points}\]

□ A. $d + 1$ \[2 \text{ points}\]
□✓ B. $2d + 1$
□ C. $2^d + 1$
□ D. $2^{d+1} - 1$
□ E. There is not enough information to uniquely determine an answer.