1. Below is a proof by strong induction that, for any \(n \in \mathbb{Z}^+ \), any connected graph with \(n \) nodes has at least \(n - 1 \) edges. The induction variable is \(n \).

Fill in the blanks below to complete the proof. \([25 \text{ points}]\)

(a) The base case claim, which is clearly true, is that every connected graph with 1 node has at least 0 edges.

(b) The induction step. We claim that:

\[\forall k \geq 2, \text{ if } \exists n \in \mathbb{Z}^+ \text{ such that } n \leq k - 1, \text{ it holds that any connected graph } G \text{ with } n \text{ nodes has at least } n - 1 \text{ edges,} \]

(to prove:) then any connected graph \(G \) with \(k \) nodes has at least \(k - 1 \) edges.

(c) To prove the above claim, consider an arbitrary connected graph \(G \) with \(k \) nodes. Let \(m \) denote the number of edges in \(G \). We need to prove that \(m \geq k - 1 \).

Let \(u \) be an arbitrary node in \(G \). Let \(d \) be the degree of \(u \). From \(G \), if we remove \(u \) and the \(d \) edges connected to it, we obtain a subgraph \(H \) of \(G \).

Let \(t \) denote the number of connected components in \(H \). Then (give an upper bound)

\[t \leq d \] \hspace{1cm} (1)

(Justification omitted.)
For each $i = 1, \ldots, t$, let n_i denote the number of vertices in the i^{th} connected component of H, and m_i be the number of edges in it. Clearly,

$$\sum_{i=1}^{t} n_i = k - 1 \quad (2)$$

Also, for each $i = 1, \ldots, t$, since $n_i \leq k - 1$, by the induction hypothesis (relate n_i and m_i):

$$m_i \geq n_i - 1 \quad (3)$$

Finally, the number of edges in G, $m = d + \sum_{i=1}^{t} m_i$ (relate it to m_i). Hence, by equations (1), (2) and (3), (complete the proof)

$$m \geq d + \sum_{i=1}^{t} (n_i - 1)$$

$$= d + (k - 1) - t \geq k - 1$$.
1. Below is a proof by strong induction that, for any $n \in \mathbb{Z}^+$, any connected graph with n nodes has at least $n - 1$ edges. The induction variable is n.

Fill in the blanks below to complete the proof. [25 points]

(a) The base case claim, which is clearly true, is that _______

 every connected graph with 1 node has at least 0 edges _______.

(b) The induction step. We claim that:

\[
\begin{align*}
\text{(range for } k : &) \quad \forall k \geq 1, \text{ if } \\
\text{(induction hypothesis: } & \forall n \in \mathbb{Z}^+ \text{ such that } n \leq k, \text{ it holds that any connected graph } G \\
& \text{ with } n \text{ nodes has } \underline{\text{at least } n - 1} \text{ edges,} \\
\text{(to prove:) } & \text{then any connected graph } G \text{ with } k + 1 \text{ nodes has at least } k \text{ edges.}
\end{align*}
\]

(c) To prove the above claim, consider an arbitrary connected graph G with ________ nodes. Let m denote the number of edges in G. We need to prove that $m \underline{\geq k}$.

Let u be an arbitrary node in G. Let d be the degree of u. From G, if we remove u and the d edges connected to it, we obtain a subgraph H of G.

Let t denote the number of connected components in H. Then (give an upper bound)

\[
t \underline{\leq d}
\]

(Justification omitted.)
For each $i = 1, \ldots, t$, let n_i denote the number of vertices in the i^{th} connected component of H, and m_i be the number of edges in it. Clearly,

$$
\sum_{i=1}^{t} n_i = k \tag{2}
$$

Also, for each $i = 1, \ldots, t$, since $n_i \leq k$, by the induction hypothesis (relate n_i and m_i):

$$
m_i \geq n_i - 1 \tag{3}
$$

Finally, the number of edges in G, $m = d + \sum_{i=1}^{t} m_i$ (relate it to m_i). Hence, by equations (1), (2) and (3), (complete the proof)

$$
m \geq d + \sum_{i=1}^{t} (n_i - 1) \\
= d + k - t \geq k
$$