1. Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) and \(g : \mathbb{R} \rightarrow \mathbb{R} \) be defined as follows:

\[
\begin{align*}
 f(x) &= \begin{cases}
 x + 1 & \text{if } x < -1 \\
 x - 1 & \text{if } x > 1 \\
 0 & \text{otherwise.}
 \end{cases} \\
 g(x) &= \begin{cases}
 x - 1 & \text{if } x < 0 \\
 x + 1 & \text{if } x > 0 \\
 0 & \text{otherwise.}
 \end{cases}
\end{align*}
\]

Mark all the correct choices below: \([8 \text{ points}]\)

- A. \(f \) is one-to-one. \(\square\)
- B. \(g \) is one-to-one. \(\checkmark\)
- C. \(f \) is onto. \(\checkmark\)
- D. \(g \) is onto. \(\square\)

\(\checkmark\) Treat as 4 True/False problems worth 2 point each.

2. For \(f \) and \(g \) as defined above, define \(g \circ f \) and \(f \circ g \). \([8 \text{ points}]\)

Solution:

\[
\begin{align*}
 g \circ f(x) &= \begin{cases}
 x & \text{if } x < -1 \text{ or } x > 1 \\
 0 & \text{otherwise.}
 \end{cases} \\
 f \circ g(x) &= x \text{ for all } x \in \mathbb{R}.
\end{align*}
\]

(Note that \(f \) is an inverse of \(g \). On the other hand, \(f \) is not one-to-one and hence cannot have an inverse.)

\(\checkmark\) 4 points for each part. Full points for describing the functions alternatively (e.g., \(f \circ g \) is the identity function, or just \(f \circ g(x) = x \) without quantifying \(\forall x \in \mathbb{R} \)).

\(\checkmark\) -1 if \(g \circ f \) is given as identity.

\(\checkmark\) Up to 2 points for each part, involving some elements of the correct answer.

3. Given relations \(\sqsubseteq_1 \) and \(\sqsubseteq_2 \) over a set \(S \), define a new relation \(\sqsubseteq_{12} \) over \(S \) as follows:

\(\forall a, b \in S, a \sqsubseteq_{12} b \text{ if (and only if) } a \sqsubseteq_1 b \text{ or } a \sqsubseteq_2 b. \)

Mark all the correct choices below: \([4 \text{ points}]\)
A. If ⊏₁ is reflexive, so is ⊏₁₂.

B. If ⊏₁ is irreflexive, so is ⊏₁₂. (Both need to be irreflexive for ⊏₁₂ to be so.)

C. If both ⊏₁ and ⊏₂ are symmetric, so is ⊏₁₂.

D. If both ⊏₁ and ⊏₂ are anti-symmetric, so is ⊏₁₂. (Consider having \(a \sqsubseteq₁ b \) and \(b \sqsubseteq₂ a \).)

♦ Treat as 4 True/False problems worth 1 point each.
1. Let $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ be defined as follows:

$$f(x) = \begin{cases}
 x - 1 & \text{if } x < 0 \\
 x + 1 & \text{if } x > 0 \\
 0 & \text{otherwise.}
\end{cases}$$

$$g(x) = \begin{cases}
 x + 1 & \text{if } x < -1 \\
 x - 1 & \text{if } x > 1 \\
 0 & \text{otherwise.}
\end{cases}$$

Mark all the correct choices below: [8 points]

- ✓ A. f is one-to-one.
- □ B. g is one-to-one.
- □ C. f is onto.
- ✓ D. g is onto.

♠ Treat as 4 True/False problems worth 2 point each.

2. For f and g as defined above, define $g \circ f$ and $f \circ g$. [8 points]

$$g \circ f(x) = x \text{ for all } x \in \mathbb{R}.$$
$$f \circ g(x) = \begin{cases}
 x & \text{if } x < -1 \text{ or } x > 1 \\
 0 & \text{otherwise.}
\end{cases}$$

(Note that g is an inverse of f. On the other hand, g is not one-to-one and hence cannot have an inverse.)

♠ 4 points for each part. Full points for describing the functions alternatively (e.g., $g \circ f$ is the identity function, or just $g \circ f(x) = x$ without quantifying $\forall x \in \mathbb{R}$).

♠ -1 if $f \circ g$ is given as identity.

♠ Up to 2 points for each part, involving some elements of the correct answer.

3. Given relations \sqsubseteq_1 and \sqsubseteq_2 over a set S, define a new relation \sqsubseteq_{12} over S as follows:

$\forall a, b \in S, a \sqsubseteq_{12} b$ if (and only if) $a \sqsubseteq_1 b$ or $a \sqsubseteq_2 b$.

Mark all the correct choices below: [4 points]
A. If both \sqsubset_1 and \sqsubset_2 are symmetric, so is \sqsubset_{12}.

B. If both \sqsubset_1 and \sqsubset_2 are anti-symmetric, so is \sqsubset_{12}. (Consider having $a \sqsubset_1 b$ and $b \sqsubset_2 a$.)

C. If \sqsubset_1 is reflexive, so is \sqsubset_{12}.

D. If \sqsubset_1 is irreflexive, so is \sqsubset_{12}. (Both need to be irreflexive for \sqsubset_{12} to be so.)

♦ Treat as 4 True/False problems worth 1 point each.