1. Check the (single) box that best characterizes each item. [6 points]

\[\forall x \in \mathbb{R}, (|x+5| \leq 5) \rightarrow (|x| \leq 100). \]

- true [✓] false undefined

\[\neg (p \land \neg q) \equiv \neg p \land q \]

- true undefined false [✓]

\[\neg (\forall x \ P(x) \rightarrow Q(x)) \equiv \exists x \ \neg (P(x) \land Q(x)) \]

- true undefined false [✓]

2. Predicates [12 points]

Suppose three predicates, \(C, D \) and \(O \) (standing for being a cat, a dog, or the name of an operating system) are defined over the universe \{Lion, Wolf, Fox, Puma, Jaguar\}, as follows (\(T \) denotes True and \(F \) denotes False).

<table>
<thead>
<tr>
<th>x</th>
<th>C(x)</th>
<th>D(x)</th>
<th>O(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lion</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>Wolf</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>Fox</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>Puma</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Jaguar</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Select all the statements below that are true. (No justification is needed.)

- [✓] A. \(\forall x \ O(x) \rightarrow C(x) \).
- □ B. \(\exists x \ \neg (O(x) \rightarrow C(x)) \).
- [✓] C. \(\exists x \ D(x) \rightarrow O(x) \).
- [✓] D. \(\forall x \ \neg (C(x) \land D(x)) \).

Since \(C(\text{Lion}) \) and \(C(\text{Jaguar}) \).

This is the negation of A.

Consider \(x \) s.t. \(\neg D(x) \): say \(x = \text{Lion} \).

\(C \) and \(D \) are never simultaneously true.

3. Which of the following propositions is equivalent to the proposition \(p \)? [2 points]

- [✓] A. \(\neg p \rightarrow F \) (where \(F \) stands for false)
- □ B. \(p \rightarrow \neg p \)
- □ C. \(p \rightarrow F \)
1. Check the (single) box that best characterizes each item. [6 points]

\[\exists x \in \mathbb{R}, (|x + 5| \leq 5) \land (|x| > 15). \]

- true □
- false ✓
- undefined □

\[\neg(p \land \neg q) \equiv \neg p \land q \]

- true □
- false ✓

\[\neg(\forall x P(x) \rightarrow Q(x)) \equiv \exists x P(x) \land \neg Q(x) \]

- true ✓
- false □

2. Predicates [12 points]

Suppose three predicates, \(C, D \) and \(O \) (standing for being a cat, a dog, or the name of an operating system) are defined over the universe \{Lion, Wolf, Fox, Puma, Jaguar\}, as follows (\(T \) denotes True and \(F \) denotes False).

<table>
<thead>
<tr>
<th></th>
<th>(C(x))</th>
<th>(D(x))</th>
<th>(O(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lion</td>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
</tr>
<tr>
<td>Wolf</td>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
</tr>
<tr>
<td>Fox</td>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
</tr>
<tr>
<td>Puma</td>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
</tr>
<tr>
<td>Jaguar</td>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
</tr>
</tbody>
</table>

Select all the statements below that are true. (No justification is needed.)

- A. \(\exists x D(x) \rightarrow O(x) \). Consider \(x \) s.t. \(\neg D(x) \): say \(x = \) Lion.

- B. \(\forall x O(x) \rightarrow C(x) \). Since \(C(\text{Lion}) \) and \(C(\text{Jaguar}) \).

- D. \(\forall x \neg(C(x) \land D(x)) \). \(C \) and \(D \) are never simultaneously true.

- C. \(\exists x \neg(O(x) \rightarrow C(x)) \). This is the negation of A.

3. Which of the following propositions is equivalent to the proposition \(p \)? [2 points]

- A. \(p \rightarrow F \) (where \(F \) stands for false)

- B. \(p \rightarrow \neg p \)

- C. \(\neg p \rightarrow p \)