Algorithms and Trees

Check the box that best characterizes each item.

\[
\sum_{k=0}^{n-1} 2^k
\]

2^n - 2: \quad \square \quad 2^n - 1: \quad \checkmark

2^{n-1} - 1: \quad \square

The level of the root node in a tree of height \(h \).

0: \quad \checkmark

1: \quad \square

\(h - 1 \): \quad \square

\(h \): \quad \square

\(h + 1 \): \quad \square

How often is the root node of a tree an internal node? never: \quad \square

sometimes: \quad \checkmark

always: \quad \square

Short answer

(a) Suppose that \(g: A \to B \) and \(f: B \to C \). Prof. Snape claims that if \(f \circ g \) is onto, then \(g \) is onto. Disprove this claim using a concrete counter-example in which \(A, B, \) and \(C \) are all small finite sets.

Solution: Suppose that \(A = \{1, 2\}, B = \{3, 4, 5\}, \) and \(C = \{\text{red, blue}\} \). Define \(g \) by \(g(1) = 3 \) and \(g(2) = 5 \). Define \(f \) by \(f(3) = \text{red}, f(4) = \text{red}, \) and \(f(5) = \text{blue} \). Then \((f \circ g)(1) = \text{red} \) and \((f \circ g)(2) = \text{blue} \). So \(f \circ g \) is onto because every element of \(C \) has a pre-image. However, \(g \) isn’t onto because no element of \(A \) maps onto 4.

(b) Suppose that \(A, B \) and \(C \) are sets. Recall the definition of \(X \subseteq Y \): for every \(p \), if \(p \in X \), then \(p \in Y \). Prove that if \(A \subseteq B \) then \(A \cap C \subseteq B \cap C \). Briefly justify the key steps in your proof.

Solution: Suppose that \(p \in A \cap C \). Then \(p \in A \) and \(p \in C \), by the definition of intersection. Since \(p \in A \) and \(A \subseteq B \), \(p \in B \) (definition of subset). So \(p \in B \) and \(p \in C \), which implies that \(p \in B \cap C \) (definition of intersection).

(c) Suppose that \(g: \mathbb{Z} \to \mathbb{Z} \) is one-to-one. Let’s define the function \(f: \mathbb{Z} \to \mathbb{Z}^2 \) by \(f(x) = (x^2, g(x)) \). Prove that \(f \) is one-to-one.

Solution: Let \(x \) and \(y \) be integers. Suppose that \(f(x) = f(y) \). By the definition of \(f \), this means that \((x^2, g(x)) = (y^2, g(y)) \). So then \(x^2 = y^2 \) and \(g(x) = g(y) \). Since \(g(x) = g(y) \) and \(g \) is one-to-one, \(x = y \).
So we have that $f(x) = f(y)$ implies $x = y$. This means that f is one-to-one.

(d) How many different 6-letter strings can I make out of the letters in the word “illini”?

Solution: We calculate the number of permutations of 6 letters (6!) and divide out by the double-counting of the possibilities for l (2!) and for i (3!). This gives us $\frac{6!}{2!3!} = 5 \cdot 4 \cdot 3 = 60$ possible strings.

(e) Define the function f as follows:

- $f(1) = 1$
- $f(2) = 5$
- $f(n + 1) = 5f(n) - 6f(n - 1)$

Suppose we’re proving that $f(n) = 3^n - 2^n$ for every positive integer n. State the inductive hypothesis and the conclusion of the inductive step.

Solution: Inductive hypothesis: suppose that $f(n) = 3^n - 2^n$ for $n = 1, 2, \ldots k$, for some integer k.

Conclusion of the inductive step: $f(k + 1) = 3^{k+1} - 2^{k+1}$.

Note 1: a strong hypothesis is required because the formula reaches back two integers.

Note 2: the variable k in the conclusion matches the upper bound in the hypothesis. A common mistake is to have it match the variable in the hypothesis equation (n). We’re assuming that the equation holds for all values up through k, so we need to prove it holds for $k + 1$.

Induction

Let the function $f : \mathbb{N} \rightarrow \mathbb{Z}$ be defined by

- $f(0) = 1$
- $f(1) = 6$
- $\forall n \geq 2, f(n) = 6f(n - 1) - 9f(n - 2)$

Use strong induction on n to prove that $\forall n \geq 0, f(n) = (1 + n)3^n$.

Base case(s):

Solution: $f(0) = 1 = (1 + 0)3^0$ and $f(1) = 6 = (1 + 1)3^1$. We need to check two base cases because the inductive step will reach back two integers.

Inductive hypothesis [Be specific, don’t just refer to “the claim”]:

- Assume $f(k) = (1 + k)3^k$ for some integer k.
- Prove $f(k + 1) = (1 + k + 1)3^{k+1}$.
Solution: Suppose that \(f(n) = (1 + n)3^n \) for \(n = 0, 1, \ldots, k \), for some \(k \geq 2 \).

Rest of the inductive step:

Solution: \(f(k+1) = 6f(k) - 9f(k-1) \) by the definition of \(f \). By the inductive hypothesis, we know that \(f(k) = (1 + k)3^k \) and \(f(k - 1) = k3^{k-1} \). So by substituting, we get

\[
\begin{align*}
 f(k + 1) &= 6(1 + k)3^k - 9k3^{k-1} \\
 &= 2(1 + k)3^{k+1} - k3^{k+1} \\
 &= 2 \cdot 3^{k+1} + 2 \cdot k3^{k+1} - k3^{k+1} \\
 &= 2 \cdot 3^{k+1} + 3^{k+1} \\
 &= (k + 2)3^{k+1}
\end{align*}
\]

So \(f(k + 1) = (k + 2)3^{k+1} \), which is what we needed to show.
1. How many connected components does each graph have?
 Solution: G1 has two connected components. G2 and G3 each have one connected component.

2. Are graphs G1 and G2 (above) isomorphic? Briefly justify your answer.
 Solution: No. G2 is connected, but G1 isn’t connected. Also, G2 contains a cycle with 6 vertices, and G1 doesn’t.

3. What is the diameter of G3?
 Solution: 4. (It’s the number of edges on a shortest path between the two vertices furthest apart. In this case, y and either q or r.)

4. Does G3 contain an Euler circuit? Why or why not?
 Solution: No, it can’t contain an Euler circuit because some of the vertices (e.g. p) have odd degree.

5. Does G2 and/or G3 contain a cut edge? If so, identify which edge(s) are cut edges.
 Solution: G3 contains a cut edge: the edge connecting p and s. G2 does not contain a cut edge.