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This is a short lecture on cardinality. (Quiz fills half of this lecture.) See
the very end of section 2.4 in Rosen.

1 The rationals and the reals

You’re familiar with three basic sets of numbers: the integers, the rationals,
and the reals. The integers are obviously discrete, in that there’s a big gap
between successive pairs of integers.

To a first approximation, the rational numbers and the real numbers seem
pretty similar. The rationals are dense in the reals: if I pick any real number
x and a distance δ, there is always a rational number within distance δ of x.
Between any two real numbers, there is always a rational number.

We know that the reals and the rationals are different sets, because we’ve
shown that a few special numbers are not rational, e.g. π and

√
2. However,

these irrational numbers seem like isolated cases. In fact, this intuition is
entirely wrong: the vast majority of real numbers are irrational and the
rationals are quite a small subset of the reals.

2 Completeness

One big difference between the two sets is that the reals have a so-called
“completeness” property. It states that any subset of the reals with an upper
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bound has a smallest upper bound. (And similarly for lower bounds.) So if I
have a sequence of reals that converges, the limit it converges to is also a real
number. This isn’t true for the rationals. We can make a series of rational
numbers that converge π (for example) such as

3, 3.1, 3.14, 3.141, 3.1415, 3.14159, 3.141592, 3.1415926, 3.14159265

But there is no rational number equal to π.

In fact, the reals are set up precisely to make completeness work. One
way to construct the reals is to construct all convergent sequences of rationals
and add new points to represent the limits of these sequences. Most of the
machinery of calculus depends on the existence of these extra points.

3 Cardinality

Furthermore, although the rationals and the reals both contain infinitely
many points, we can show that the reals have “more” points. To do this, we
need to definite what it means for two sets to have the same cardinality, i.e.
the same mathematical size.

Definition: Two sets A and B have the same cardinality if and
only if there is a bijection from A to B.

Finite sets have the same cardinality exactly when they have the same num-
ber of elements in the usual sense. But not all infinite sets have the same
cardinality.

An infinite set A is countable or countably infinite if there is a
bijection from Z

+ to A.

The full set of integers is countable, because we can map the natural
numbers onto the integers using the function f where f(n) = n

2
when n is

even and f(n) = −n+1

2
when n is odd.
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The positive rationals are countable because we can put them into an
ordered list. [show picture, which is on Rosen p. 159]. Remember that we
saw a formula for such a function in homework 4. It’s not hard to extend
this construction to include the negative rationals.

However, we can show that the reals are not countable. Specifically, we’ll
show that there’s no bijection from the positive integers to the real inter-
val [0, 1] using a construction called “diagonalization” developed by Georg
Cantor.

If the numbers in [0, 1] were countable, we could put them into a list a1,
a2, and so forth. Let’s write out a table of the decimal expansions of the
numbers on this list. [see picture p. 160 of Rosen.] Now, examine the digits
along the diagonal of this table: a11, a22, etc. Suppose we construct a new
number b whose kth digit bk is 4 when akk is 5, and 5 otherwise. Then b

won’t match any of the numbers in our table, so our table wasn’t a complete
list of all the numbers in [0, 1].

So, the reals are larger than the integers.

4 Uncomputability

A practical consequence of this difference in size is that there are mathe-
matical functions that can’t be computed by any program. First, consider
the functions f : N → D (where D is the decimal digits). Each function
corresponds to the decimal expansion of some real number in [0, 1]. So even
this limited set of functions is uncountable.

However, suppose we fix an alphabet for writing our programs (e.g. 8-
bit ASCII). Since each individual program is finite in length, we can put all
possible programs into a (very long) ordered list. For any fixed character
length k, there are only a finite set of possible programs. So, we can write
down all programs by first first writing down all the 1-character programs,
then all the 2-character programs, and so forth. In other words, there’s a
bijection between the integers and the total set of programs.

But this means that the number of functions is uncountable, whereas the
number of programs is only countably infinite. So there must be mathemat-
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ical functions that we can’t compute with any (finite-length) program.
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