
Equivalence Relations

Margaret M. Fleck

24 April 2009

This lecture covers material on equivalence classes from section 8.5 of
Rosen, a topic we’ll continue through Monday.

1 Announcements

Reminder: quiz next Wednesday. The skills list is now on-line.

2 Sketch of ideas

Equivalence relations are relations that are reflexive, symmetric, and transi-
tive (RST). They are like equality except that they treat certain groups of
elements as equivalent to one another.

For example, consider congruence mod 12. The congruence relation treats
all numbers with remainder zero (0, 12, -12, 24, . . .) as if they were equal.
Similarly, the numbers with remainder 3 (3, -9, 15, -21, . . .) are treated as
equal. We have divided up the integers into 12 subsets, which don’t overlap
with one another. This is called a partition of the set of integers.

Let’s name the subsets by their remainders: [0], [1], . . . [11]. So, these are
like the 12 hours on the dial of a clock. After [11], you go back to [0] again.
Or maybe you go to [12] and then to [1] after that. One hour has two names:
0 or 12. Others have multiple names if you move back and forth between

1

12 and 24 hour clocks, e.g. 1800h is the same as 6pm. I.e. [18] and [6] are
names for the same hour.

We can now treat each subset as if all its members were merged into a
single object and define operations on these merged objects, using modular
arithmetic. For example, if we add 2 hours to 11 o’clock, we get 1 o’clock.
In our new notation: [2] + [11] = [1]. In general:

[x] + [y] = [(x + y) mod 12]

We can now give a friendly name to this new set of objects. In this case,
it’s the integers mod 12, written Z12.

This trick is widely used in mathematics to create new sets of objects such
as modular integers, the real numbers, the rationals. It’s even used to do a
mathematical version of cut-and-paste to create strange sorts of geometrical
objects such as Möbius strips.

This construction only works for equivalence relations because, as we will
see, the three properties of an equivalence relation are needed to guarantee
that we can neatly partition up the set. Also, we need to show which opera-
tions on the input set (e.g. addition) can be made to work right on the new
subset-objects.

3 Equivalence classes

Let’s define some terminology. Suppose that R is an equivalence relation on
a set A. For each element x ∈ A, we define the equivalence class of x to be
the set of all elements related to x. That is

[x]R = {y ∈ A | xRy}

(The R subscript on the square brackets is only written when we want to
be especially clear about which relation is being used.)

So, for example, if the relation is congruence mod 12, here are some
equivalence classes

2

[2] = {. . . ,−22,−10, 2, 14, 26, . . .}

[6] = {. . . ,−18,−6, 6, 18, . . .}

[18] = {. . . ,−18,−6, 6, 18, . . .}

Notice that [6] and [18] are equal. That is, they are two names for the
same subset of the integers. Other names for this same subset include [40],
and [−18]. To refer to an equivalence class, we pick any element of the class
as its representative.

Every equivalence relation has a corresponding set of equivalence classes.
For example, suppose we define a relation T on pairs of integers by (x, y)T (p, q)
if and only if x2 + y2 = p2 + qq. Then [(1, 0)] is the circle with radius 1 cen-
tered at the origin. And, in general, each equivalence class is a different circle
centered at the origin, except for [(0, 0)] which is a single point.

Or, suppose we consider all functions from the reals to the reals. We can
then define f ∼ g if and only if f = Θ(g). That is, we group together all
functions with the same big-O growth rate. Then [x2] contains all functions
that grow quadratically, e.g.

[x2] = {x2, 3x2 + 17, 2x2 + log x, x2 + x, . . .}

4 Defining datatypes with equivalence rela-

tions

An important use of equivalence classes is in defining new datatypes. Suppose
that someone has given us the integers and we want to define the rational
numbers. Let’s define F to be the set of fractions with non-zero denominator.
A fraction is just a pair of integers, written funny. Now define an equivalence
relation ∼ on F by

x
y
∼ p

q
if and only if xq = yp.

3

This is the equivalence relation used to define rational numbers. A frac-
tion x

y
represents the same rational number as p

q
if and only if xq = yp. Then

[3
4
] and [12

16
] are two names for the same rational number.

We can now give a friendly name to our new set: the rational numbers,
written Q. And we can define how operations such as addition and multipli-
cation are supposed to work on these new numbers (see next lecture). This
mathematical description of the rationals could then be used to implement
a new datatype “rational” for your favorite programming language.

For this class, we’ll try to be careful about writing the square brack-
ets around equivalence classes. However, once all the basic properties of a
datatype have been established, it’s not uncommon to drop the brackets. For
example, people typically write fractions without the square brackets around
it. But the idea hasn’t changed: when we say “the rational number x

y
”, we

mean x
y

to be a representative of the whole set of equivalent fractions.

Similarly, many computer languages have a built-in datatype for strings.
These are usually case-sensitive, so that “Uiuc”, “uiuc”, and “UIUC” would
be considered three different objects. For many language-processing appli-
cations, we’d like to consider them the same. So, mathematically, we could
define an equivalence relation that relates a pair of strings if and only if they
are the same except for case differences. Then these three things would all
be in the same equivalence class [uiuc].

Similarly, suppose that we’re using a computer language which already
has a datatype for lists of integers and we want to define a new “set” datatype
for finite sets of integers. We can do this by treating certain lists as equivalent.

Specifically, let L contain all finite lists of integers. Then we create an
equivalence relation ∼ in which two lists a1, a2, . . . , am and b1, b2, . . . , bn are
related if two conditions hold

a) For every i, there is a k such that ai = bk.

b) For every k, there is an i such that bk = ai.

We would then create a new type name (e.g. Set) for the equivalence
classes of lists. Each new Set object would then contain a list, which is some
representative of its equivalence class. We’ve got a few choices here. If we

4

store the list given to us by the user, we need to make sure that the function
set-equal returns “true” if we give it two sets whose lists are different but
contain the same elements. Alternatively, we might force each Set object
to always contain the representative of its class which is in sorted order.
This complicates construction of new Set objects but makes set-equal easy
to implement.

5 Partitions

When we used a relation R to divide up a set A into equivalence classes, we
depended implicitly on the set of classes being a partition of the input set
of values. That is, the equivalence classes cover the the whole set A, they
don’t overlap, every equivalence class contains at least one representative
element. Being a partition is very convenient because means that we don’t
have to consider annoying possibilities such as two equivalence classes having
a partial overlap.

Formally, a partition of a set A is a collection of non-empty subsets of
A which cover all of A and don’t overlap. Specifically, if the subsets are
A1, A2, . . .An, then they must satisfy three conditions:

a) A1 ∪ A2 ∪ . . . ∪ An = A

b) Ai 6= ∅ for all i

c) Ai ∩ Aj = ∅ for all i 6= j.

A partition can contain an infinite set of subsets. To cover this possibility,
we need to use a more general notation. Let P be our partition. then the
three conditions are:

a)
⋃

X∈P X = A

b) X 6= ∅ for all X ∈ P

c) X ∩ Y = ∅ for all X, Y ∈ P , X 6= Y

5

We’ve seen how an equivalence relation generates a partition. You can do
this construction the opposite way as well, starting with a partition P and
using it to construct an equivalence relation ∼. Specifically, we define x ∼ y

if and only if x and y are in the same element of P .

6 Need for the RST properties

To build equivalence classes, our relation does need to be an equivalence rela-
tion, i.e. be reflexive, symmetric, and transitive. Suppose our relation wasn’t
reflexive. Then [x] wouldn’t necessarily contain x. In fact, it’s possible that
[x] might not contain any elements and/or x might not be in any equivalence
class.

Suppose our relation wasn’t symmetric. Then y might be in [x] but x

not in [y]. So [x] and [y] could intersect partially, without being the same
set, and it might matter which representative element we picked to name
each equivalence class. This would make equivalence classes harder to use
for mathematical or practical purposes.

Relations that aren’t transitive fail in a more subtle way. Consider the
relation R on the integers defined by xRy if and only if |x − y| ≤ 2. Then
[3] = {1, 2, 3, 4, 5} and [5] = {3, 4, 5, 6, 7}. So, again, our subsets can intersect
partially.

7 RST implies partition

Let’s prove that if R is an equivalence relation on a set A, the equivalence
classes of R form a partition of A.

First, since R is reflexive, xRx for any x ∈ A. So x ∈ [x] for any x ∈ A.
Therefore, no equivalence class is empty and the union of all equivalence
classes is the whole set A. So the only thing that remains to be shown is
that two distinct equivalence classes don’t overlap.

Let x and y be two elements of A and suppose that [x]∩ [y] 6= ∅. We need
to show that [x] = [y].

6

Since [x]∩ [y] 6= ∅, we can pick an element c that is in [x]∩ [y]. I.e. c ∈ [x]
and c ∈ [y]. By the definition of equivalence class, this means that xRc and
yRc. Since R is symmetric, we also have that cRy. So, by transitivity, xRy.
And, thus by symmetry, yRx.

To show that [x] ⊆ [y], pick any element d ∈ [x]. The definition of [x]
implies that xRd. Since we know that yRx, transitivity implies that yRd.
So d ∈ [y]. A similar argument shows that [y] ⊆ [x]. So [x] = [y].

7

