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This lecture introduces relations and covers basic properties of relations,
i.e. parts of section 8.1 and 8.3 of Rosen. When you look at Rosen, be
aware that we’re covering only relations on a single set, where he also covers
relations between two sets.

1 Announcements

There will be a quiz next Wednesday (April 29th). The skills list will be
posted soon, but it will approximately cover material through the end of this
week.

2 Relations

A relation R on a set A is a subset of A ×A, i.e. R is a set of ordered pairs
of elements from A. If R contains the pair (x, y), we say that x is related to
y, or xRy in shorthand.1 We’ll write x 6Ry to mean that x is not related to
y.

For example, suppose we let A = {2, 3, 4, 5, 6, 7, 8}. We can define a
relation W on A by xWy if and only if x ≤ y ≤ x + 2. Then W contains

1The textbook writes (x, y) ∈ R for the first few sections and then switches to this
shorthand. I find the shorthand much easier to read.
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pairs like (3, 4) and (4, 6) and (5, 5), but not the pairs (6, 4) and (3, 6). We
can draw pictures of relations using directed graphs, with an arrow joining
each pair of elements that are related. E.g. W looks like:

2 3 4 5 6 7 8

In fact, there’s very little formal difference between a relation on a set
A and a directed graph, because graph edges can be represented as ordered
pairs of endpoints. They are two ways of describing the same situation.

We can define another relation S on A by saying that xSy is in S if x ≡ y

(mod 3). Then S would look like:
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Or, suppose that B = {2, 3, 4, 5, 6, 12, 25}. Let’s set up a relation T on B

such that xTy if x|y and x 6= y. Then our picture would look like

25 12

46

5 3 2

Mathematical relations can also be used to represent real-world relation-
ships, in which case they often have a less regular structure. For example,
suppose that we have a set of students and student x is related to student y
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if x nominated y for ACM president. The graph of this relation (call it Q)
might look like:

Fred Ginger

AlanSteve

Julie Bill Henry

Relations can also be definited on infinite sets or multi-dimensional ob-
jects. For example, we can define a relation Z on the real plane R

2 in which
(x, y) is related to (p, q) if and only if x2 + y2 = p2 + q2. In other words, two
points are related if they are the same distance from the origin.

For complex relations, the full directed graph picture can get a bit messy.
So there are simplified types of diagrams for certain specific special types of
relations, e.g. the so-called Hasse diagram for partial orders.

3 Properties of relations: reflexive

Relations are classified by several key properties. The first is whether an
element of the set is related to itself or not. There are three cases

• Reflexive: every element is related to itself.

• Irreflexive: no element is related to itself.

• Neither reflexive nor irreflexive: some elements are related to them-
selves but some aren’t.

In our pictures above, elements related to themselves have self-loops. So it’s
easy to see that W and S are reflexive, T is irreflexive, and Q is neither.
The familiar relations ≤ and = on the real numbers are reflexive, but < is
irreflexive. Suppose we define a relation M on the integers by xMy if and
only if x + y = 0. Then 2 isn’t related to itself, but 0 is.

The formal definition states that if R is a relation on a set A then
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• R is reflexive if xRx for all x ∈ A.

• R is irreflexive if x 6Rx for all x ∈ A.

Notice that irreflexive is not the negation of reflexive. The negation of
reflexive would be:

• not reflexive: there is an x ∈ A, x 6Ry

4 Symmetric and antisymmetric

Another important property of a relation is whether the order matters within
each pair. That is, if (x, y) is in R, is (y, x) always in R? A relation satisfying
this property is called symmetric. In a graph picture of a symmetric relation,
a pair of elements is either joined by a pair of arrows going in opposite
directions, or no arrows. In our examples with pictures above, only S is
symmetric.

Relations that resemble equality are normally symmetric. For example,
the relation X on the integers defined by xXy iff |x| = |y| is symmetric. So
is the relation N on the real plane defined by (x, y)N(p, q)) iff (x−p)2 +(y−
q)2 ≤ 25 (i.e. the two points are no more than 5 units apart).

Relations that put elements into an order, like ≤ or divides, have a differ-
ent property called antisymmetry. A relation is antisymmetric if two distinct
elements are never related in both directions. In a graph picture, a pair of
points may be joined by a single arrow, or not joined at all. In our pictures
above, W and T are antisymmetric.

As with reflexivity, there are mixed relations that have neither property.
So the relation Q above is neither symmetric nor antisymmetric.

If R is a relation on a set A, here’s the formal definition of what it means
for R to be symmetric (which doesn’t contain anything particularly difficult):

symmetric: for all x, y ∈ A, xRy implies yRx

There’s two ways to define antisymmetric. They are logically equivalent
and you can pick whichever is more convenient for your purposes:
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antisymmetric: for all x and y in A with x 6= y, xRy implies y 6Rx

antisymmetric: for all x and y in A, xRy and yRx implies x = y

To interpret the second definition, remember that when mathematicians
pick two values x and y, they leave open the possibility that the two values are
actually the same. If we said that in normal conversational English, we would
normally mean that they had to be different. I find that the first definition
is better for understanding the idea of antisymmetry, but the second is more
useful for writing proofs.

5 Transitive

The final important property of relations is transitivity. A relation R on a
set A is transitive if

transitive: for all a, b, c ∈ A, aRb and bRc implies that aRc

You’ve probably seen transitivity before, because it holds for a broad
range of familiar numerical relations such as <, =, divides, and set inclusion.
For example, for real numbers, if x < y and y < z, then x < z. Similarly, if
x|y and y|z, then x|z. For sets, X ⊆ Y and Y ⊆ Z implies that X ⊆ Z.

If we look at graph pictures, transitivity means that whenever there is a
path from x to y then there must be a direct arrow from x to y. This is true
for S and B above, but not for W or Q.

We can also understand this by spelling out what it means for a relation
R on a set A not to be transitive:

not transitive: there are a, b, c ∈ A, aRb and bRc and a 6Rc

So, to show that a relation is not transitive, we need to find one counter-
example, i.e. specific elements a, b, and c such that aRb and bRc but not
aRc. In the graph of a non-transitive relation, you can find a subsection that
looks like:
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a

b

c

It could be that a and c are actually the same element, in which case the
offending subgraph might look like:

a b

The problem here is that if aRb and bRa, then transitivity would imply
that aRa and bRb.

One subtle point about transitive is it’s an if/then statement. So it’s
ok if some sets of elements just aren’t connected at all. For example, this
subgraph is consistent with the relation being transitive.

a b

c

A disgustingly counter-intuitive special case is the relation P = ∅ on
any set, i.e. the relation in which no elements are related to one another.
It’s transitive, because it’s never possible to satisfy the hypothesis of the
definition of transitive. It’s also symmetric, for the same reason. And, oddly
enough, antisymmetric. It’s irreflexive and not reflexive. Unlike symmetry
and transitivity, reflexivity unconditionally requires that pairs of the form
(x, x) must be in the relation, which they aren’t.
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6 Types of relations

Now that we have these basic properties defined, we can define three impor-
tant classes of relations:

• An equivalence relation is a relation that is reflexive, symmetric, and
transitive.

• A partial order is a relation that is reflexive, antisymmetric, and tran-
sitive.

• A strict partial order is a relation that is irreflexive, antisymmetric,
and transitive.

Equivalence relations act like equality, partial orders act like ≤ or ≥, and
strict partial orders act like < or >. In the picture examples above, S is an
equivalence relation and T is a strict partial order. If we pick some collection
of sets, then the set inclusion relation ⊆ (no picture) would be a (non-strict)
partial order on them.
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