CS 173: Discrete Structures

Eric Shaffer
Office Hour: Wed. 12-1, 2215 SC shaffer1@illinois.edu

Announcements

- Quiz Wed. 3/18
- Covers through solving recurrences by unrolling
- Today:
- Solving recurrence relations (Section 7.1)
- Approximation
- Recurrence trees
- Algorithms (Section 3.3)
- Analyzing theoretical efficiency
- Searching

Solving recurrence relations

$$
\begin{aligned}
& T(n)=T(n-1)+n^{2} \\
& T(0)=0
\end{aligned}
$$

Technique: UNROLLING THE RECURRENCE

$$
\begin{aligned}
T(n) & =T(n-1)+n^{2} \\
& =T(n-2)+(n-1)^{2}+n^{2} \\
& =T(n-i)+(n-i+1)^{2}+\ldots+n^{2}
\end{aligned}
$$

We reach the base case when $i=n$
$=T(0)+1^{2}+2^{2}+3^{2}+\ldots+n^{2}=$ sum of the first n squares

A few quick words about sums...

- There are formulas for some finite summations you should know
- You should know sum of first n integers
- You can use it to solve sum of first n even numbers
- You can use it to solve sum of first n odd numbers
- Sum of an arithmetic series
- Series has constant difference d between terms
- E.g. $1+4+7+10+\ldots .+82$
- Sum $=n\left(a_{1}+a_{n}\right) / 2$
- Sum of a geometric series
- Series has a constant ratio r between successive terms
- E.g. $1+2+4+8+\ldots+512$
- Sum $=\left(a_{1}\left(r^{n+1}-1\right)\right) /(r-1)$
- Everything else you should just look up ...like the sum of the first n squares...

Solving recurrence relations

Sum of the first n squares:

$$
\begin{aligned}
& \text { Note }(x+1)^{\wedge} 3=x^{\wedge} 3+3 x^{\wedge} 2+3 x+1 \\
& 1^{3}=(0+1)^{3}=0^{3}+3\left(0^{2}\right)+3(0)+1 \\
& 2^{3}=(1+1)^{3}=1^{3}+3\left(1^{2}\right)+3(1)+1 \\
& 3^{3}=(2+1)^{3}=2^{3}+3\left(2^{2}\right)+3(2)+1 \\
& \quad \text { etc. } \\
& (n+1)^{3}=(n+1)^{3}=n^{3}+3 n^{2}+3 n+1
\end{aligned}
$$

Add up along each column
Subtract sum of the first n cubes from side Solve for sum of first n squares

Sum of first n squares $=n(n+1)(2 n+1) / 6$

Divide-and-conquer recurrences

In general: $T(n)=a T(n / b)+f(n)$
Let's try a specific example: $T(n)=2 T(n / 2)+n$ with $T(1)=1$
Technique: UNROLLING THE RECURRENCE

$$
\begin{aligned}
& T(n)=2 T(n / 2)+n \\
& T(n)=2(2 T(n / 4)+n / 2)+n=4 T(n / 4)+n+n \\
& T(n)=2(2(2 T(n / 8)))+3 n \\
& T(n)=2^{i} T(n / 2 i)+n i
\end{aligned}
$$

Assume n is a power of $2 \ldots$ when do we hit the base case? $i=\lg n$

$$
T(n)=n+n \lg n
$$

Recursion Trees

$$
\mathrm{T}_{\mathrm{n}}=2 \mathrm{~T}_{\mathrm{n}-1}+1, \mathrm{~T}_{0}=0 \ldots \text { let's draw a picture }
$$

Solution is the sum of all the labels Each label in the diagram contributes "1" to the sum

Last level of the tree will have $2^{n} T_{0}$ labels Summing by levels: $T(n)=1+2+4+\ldots+2^{n-1}=2^{n}-1$

Approximate solutions with recursion trees

$$
\mathrm{T}_{\mathrm{n}}=2 \mathrm{~T}_{n / 2}+\mathrm{n}^{2}, \mathrm{~T}_{1}=1
$$

Sum along each level

Assume n is a power of 2
There are $(\lg n)+1$ levels in the tree
$T(n)=n^{2} \sum\left(1 / 2^{i}\right)$ with $i=0, . ., \lg n$
A decreasing geometric series dominated by first term so $T(n)=\Theta\left(n^{2}\right)$

Solving recurrence relations approximately

$T(n)=T(n-1)+T(n-2)$
$T(0)=0, T(1)=1$
If we only care about approximate solutions we can observe the following
$T(n-2) \leq T(n-1)$ so $T(n) \leq 2 T(n-1)$
$2 T(n-1) \leq 2^{n}$ when we let $T(1)=T(0)=1$
So $T(n)=O\left(2^{n}\right)$

Solving recurrence relations approximately

$T(n)=T(n-1)+n$
$T(0)=0, T(1)=1$

If we only care about approximate solutions we can observe the following
$T(n)=T(n-1)+O(n)$
The final sum, when we reach base case, has n terms.
So $T(n)=n O(n)=O\left(n^{2}\right)$

Solving recurrence relations approximately

So, quick summary:

1) Unrolling is best used on relations with a single recursive term

$$
T(n)=T(n-a)+f(n) \text { or } T(n)=T(n / a)+f(n)
$$

2) Trees are easier to use on relations with multiple terms

$$
T(n)=c_{1} T\left(n / a_{1}\right)+c_{2} T\left(n / a_{2}\right)+f(n)
$$

1) "Divide and Conquer" relations will usually have a logarithmic solution
