

CS 173: Discrete Structures

Eric Shaffer

Office Hour: Wed. 12-1, 2215 SC

shaffer1@illinois.edu

Agenda

- Midterm on Wednesday
 - Bring your IDs
 - Last semester's first mid-term:

http://www.cs.uiuc.edu/class/fa08/cs173/Exams/midterm1-answers.pdf

NOTE: TOPICS NOT NECESSARILY THE SAME!

Today: Functions

Sizi = (f(n))

"closed form"

Functions for the mid-term

- Know the basic notation $f:A \rightarrow B$
- Know the definition of a function
- Know the meaning of the terms *domain* and *co-domain*
- Know when a function is *one-to-one* (injective)
- Know when a function is *onto* (surjective)
- Identify if a function is one-to-one and/or onto.

Functions - injection

A function $f: A \to B$ is one-to-one (injective, an injection) if $\forall a,b,c$, $(f(a) = b \land f(c) = b) \to a = c$

Are these injective:

1)
$$f: R^+ \to R^+$$
 $f(x) = 1/(x+1)$ $(x+1)$

2) f:
$$Q \rightarrow Q^{\geq 0}$$
 f(x) = $|3x+1|$ $\cap \bigcirc$

$$f(-2) = 5$$
 not 1-1
 $f(4/3) = 5$

$$Z^{+} = \{1, 2, ...\}$$
 $R^{+} \{x \in \mathbb{R}: x > 0\}$

Functions - surjection

A function $f: A \rightarrow B$ is onto (surjective, a surjection) if $\forall b \in B$, $\exists a \in A f(a) = b$

$$f(x) = 3x+1$$

Are these surjective:
1)
$$f: N \rightarrow N$$
 $f(x) = 3x+1$ $1 \neq x \in N$ $2 \neq 3 + 1$

2)
$$f: R \rightarrow N$$

2) f: R
$$\rightarrow$$
 N f(x) = 3x+1 (x)

$$y = 3x + 1 if follows$$

$$X = y - 1 i$$

$$X = R$$

Functions - bijection

A function $f: A \rightarrow B$ is bijective if it is one-to-one and onto.

Are these bijective:

1)
$$f: Z \to Z$$
 $f(x) = 2x+3$, $\wedge \circ$

2) f: Z
$$\rightarrow N$$
 f(x) = $-2x$ if $x \leftarrow 0$ = $\frac{2}{5}$ $\frac{2}$

Functions - examples

domain

Changing the domain and co-domain can change the properties of the function

Suppose
$$f: R^+ \rightarrow R^+$$
, $f(x) = x^2$.

Functions - examples

Suppose
$$f: \mathbb{R} \to \mathbb{R}^+$$
, $f(x) = x^2$.

Is f one-to-one? ∩ ○

Is f onto? yes
Is f bijective? no

Functions - examples

Suppose $f: R \to R$, $f(x) = x^2$.

Is f one-to-one? ∧ o

Is f onto? no

Proving f is one-to-one

Let $f: Z \rightarrow Z$ be defined by f(x) = 3x + 7

Prove f is one-to-one.

How do we start? Think of the def. of one-to-one.

We need to show that for all $x,y \in Z$

If
$$f(x) = f(y)$$
 then $x = y$

Proving f is one-to-one

Let $f: Z \rightarrow Z$ be defined by f(x) = 3x + 7

Prove f is one-to-one.

Prove f is one-to-one.

If
$$f(x) = f(y) \rightarrow x = y \quad \forall x, y \in Z \quad \text{then}$$

$$f(x) \quad w; || be \quad |-|$$

Assume
$$f(x) = f(y)$$

 $3x+1=3y+7$
 $3x=3y$
 $x=y$
So $f(x) = f(y)$

Proving g is onto

Let $g: Z \to Z$ be defined by g(x) = g + 3 \times Prove g is onto.

How do we start? Think of the def. of onto

We need to show that for all $y \in Z$ There is some $x \in Z$ such that g(x) = y 50 3 x E Z S,t.

Inverses

Functions $f: A \to B$ and $g: B \to A$ are inverses if f(a) = b iff g(b) = a for all $a \in A$ and $b \in B$

The inverse of f is denoted f^{-1}

Do all functions have inverses?

n 0

What conditions are required for f-1 to exist?

Inverses

Functions $f: A \to B$ and $g: B \to A$ are inverses if f(a) = b iff g(b) = a for all $a \in A$ and $b \in B$

What is the inverse of the function $f:Q\rightarrow Q$

$$f(x) = (2/5)x - 2$$
?

 $\left(\frac{2}{5}\right) \times -2$

$$f(x) = 2x+8$$
?

$$\left(\frac{1}{3}\right) = \left(\frac{1}{2}\right)y - 4$$

Proofs about inverses

if f: Q
$$\rightarrow$$
 Q f(x) = 3x+9

and g:
$$Q \rightarrow Q$$
 g(y) = y/3-3, prove f and g are inverses

Functions - composition

Let $f: A \rightarrow B$, and $g: B \rightarrow C$ be functions.

Then the composition of f and g is:

$$(g \circ f)(x) = g(f(x))$$

Example: Let $g(x) = x^2$ for $x \in Z$ Let f(x) = 3x+4 for $x \in Z$

$$\int gof(x) = g(f(x))$$

$$= 4 (3x+4) = (3x+4)$$

Proofs about composition

Let $f:A \rightarrow B$, and $g:B \rightarrow C$ be functions.

Prove that if f and g are injective that $(g \circ f)(x)$ is injective.

What do we need to show?

Proofs about composition

Let $f:A \rightarrow B$, and $g:B \rightarrow C$ be functions.

Prove that if f and g are injective that $(g \circ f)(x)$ is injective.

fog (x)=

Suppose
$$g(f(x)) = g(f(y))$$
 for $x,y \in A$
Since g is injective $f(x) = f(y)$ since $f(x) = f(y)$ since $f(x) = f(y)$ since $f(x) = f(y)$

we're shown
$$g(f(x)) = g(f(y)) - \infty$$

$$x = y \quad \text{if } x_{10}y \in A$$
So $g \circ f \circ 1 = 1 - 1$

