
Functions

Margaret M. Fleck

20 February 2009

This lecture starts the material in section 2.3 of Rosen. It discusses
functions and introduces the concepts of one-to-one and onto.

1 Announcements

This lecture is brought to you by the number 65535. (This is 216 −1, i.e. the
largest number you can store in a 16-bit unsigned integer variable.)

Another useful fact is that 1000 is approximately equal to 210. This is
helpful when determining how large a number you will get when trying to
access locations in computer memory, especially for big memory sizes.

Another reminder of the upcoming midterm, especially to tell me about
conflicts.

2 Functions

We all know roughly what functions are, from high school and (if you’ve
taken it) calculus. You’ve mostly seen functions whose inputs and outputs
are numbers, defined by an algebraic formula such as f(x) = 2x + 3. We’re
going to generalize and formalize this idea, so we can talk about functions
with other sorts of input and output values.

Suppose that A and B are sets, then a function f from A to B (shorthand:
f : A → B) is an assignment of exactly one element of B (i.e. the output
value) to each element of A (i.e. the input value). A is called the domain of
f and B is called the co-domain.

For example, let’s define g : Z → Z by the formula g(x) = 2x. The
domain and co-domain of this function are both Z.

1

Notice that the domain and co-domain are part of the definition of the
function, just like the input/output type declarations for a function in a
programming language. Suppose we define h : N → N such that h(x) = 2x.
This is a different function from g because the declared domain and co-
domain are different.

Two functions are equal if they have the same domain, the same co-
domain, and assign the same output value to each input value.

The inputs and outputs to functions don’t have to be numbers and a
function doesn’t have to be defined by an algebraic formula. It’s sufficient
to describe a clear, explicit procedure for finding the output value, given the
input value. For example, we can define

s : {CS 173 course staff} → {letters of the alphabet}

where s(x) is the first letter in x’s name. For example s(Eric) = E.
For small finite sets like these, we can also just list all the input/output

pairs:

Eric 7→ E

Margaret 7→ M

Lance 7→ L

Lucas 7→ L

Ayesha 7→ A

Parya 7→ P

Chris 7→ C

Andrew 7→ A

Rick 7→ R

Yuzi 7→ Y

Mike 7→ M

Carl 7→ C

2

We also show this with a drawing like this. [draw something similar to
Figures 1 in Rosen 2.3]

Notice that we use 7→ when we show the output value for a a single input
value, but → to show the input and output sets for the whole function.

A function is also known as a map or mapping and we can say that some
input value x maps to the corresponding output value y.

3 What isn’t a function?

Much of the definition of a function is an association of output values with
input values. Suppose I give you an association p. When is p not a function?

One possibility is that p doesn’t provide an output value for every input
value. For example, suppose we defined p : R → R such that p(x) is the mul-
tiplicative inverse of x. That is, p(x) is the integer y such that xy = 1. This
isn’t a function because one input value (zero) doesn’t have a corresponding
output value.1

Notice that this depends critically on what we’ve declared the domain to
be. If we revised the type declaration for p to read p : R − {0} → R, then p

would be a function.
An association is also not a function if it assigns two different output val-

ues to the same input value. Suppose if I want to define the locations of top-5
CS departments. I.e. the domain is D = {MIT, CMU, UIUC, Stanford, Berkeley}
and the do-domain is the set of all cities C. I might define c as:

MIT 7→ Cambridge

CMU 7→ Pittsburgh

UIUC 7→ Urbana

UIUC 7→ Champaign

Berkeley 7→ Berkeley

Stanford 7→ Palo Alto

1Almost functions that don’t provide an output for every input are sometimes useful

and are known as partial functions. But we won’t use them in this class.

3

This isn’t a function because UIUC is mapped to two distinct output
values. When we need to have a function return multiple values, we need to
return them as sets. For example, we might define c : D → P(C) by:

MIT 7→ {Cambridge}

CMU 7→ {Pittsburgh}

UIUC 7→ {Urbana, Champaign}

Berkeley 7→ {Berkeley}

Stanford 7→ {Palo Alto}

Since we’ve declared that our output values are sets, we have to make
them all sets. So we have to map (say) MIT to {Cambridge} rather than to
the bare string Cambridge.

Another example of this problem would be the function h : R
+ → R such

that h(x) =
√

x which maps each positive real onto its square root. We could
fix this function by stipulating that we mean the positive square root.

4 Pre-images and one-to-one

A function is one-to-one if it never assigns two input values to the same
output value. That is

∀x, y ∈ A, x 6= y → f(x) 6= f(y)

or, equivalently,
∀x, y ∈ A, f(x) = f(y) → x = y

(These two versions are equivalent because they are the contrapositives of
one another.)

In these two versions of the definition, notice that when you choose x and
y, they don’t have to be different (math jargon: “distinct”) values. In normal
English, if you give different names to two objects, the listener is expected
to understand that they are different. By contrast, mathematicians always
mean you to understand that they might be different but they might be the
same object.

For example, let g : Z → Z be defined by g(x) = 2x. g is one-to-one.
But remember our function s that mapped CS 173 instructors to the first

4

letter of their names. It’s not one-to-one because Margaret and Mike share
the same output value M.

Another classic example of a function that’s not one-to-one is the absolute
value function |x|. Or, it’s not one-to-one if the domain is the reals or the
integers. It is one-to-one if we restrict the domain to the natural numbers.

If we pick a value y ∈ B, then x ∈ A is a pre-image of y if f(x) = y.
Notice that I said a pre-image of y, not the pre-image of y. For a one-to-one
function like g, each element of the co-domain has exactly one pre-image. But
this isn’t true for functions that aren’t one-to-one. For example, the value
M has two pre-images under the function s (i.e. “Margaret” and “Mike”).

5 Images and Onto

Suppose we have a function f : A → B. If x is an element of A, then the
value f(x) is also known as the image of x. The image of f is the set

Im(f) = {f(x) : x ∈ A}
f is onto if its image is its whole co-domain. Or, equivalently,

∀y ∈ B, ∃x ∈ A, f(x) = y

For example, our function from instructors to first letters of names isn’t
onto, because its image is the set {E, M, L, A, R, P, Y, C} which is nowhere
near all the letters of the alphabet.

Suppose we define f : Z → Z by f(x) = x + 2. This function is onto. If
we pick any integer y, let x be y−2. Then f(x) = f(y−2) = (y−2)+2 = y.

Now suppose we define g : N → N using the same formula g(x) = x + 2.
g isn’t onto, because the values 0 and 1 have no pre-images.

Warning: whether a function is onto or one-to-one depends on

how we’ve declared its domain and co-domain. When we’re discussing
these properties, it is absolutely critical to declare the input/output types
for all the functions you are using.

6 Warning about variations in terminology

It used to be that people used the term “range” to refer to the co-domain.
(Ask the class how many have seen it called that.) However, formal math-
ematics has standardized on the term “co-domain” for the declared set of

5

possible output values for the function. When the term “range” is used, it is
as a synonym for “image,” i.e. the actual output values produced when you
feed in all possible input values. (Rosen uses “range” with this meaning.)

We’ll try to stick carefully to the newer convention in this class. But be
aware that older authors and authors outside math/CS may use the terms
differently.

The terms “injective” and “surjective” are fancy synonyms for one-to-one
and onto. No more and no less. A function that is both one-to-one and onto
is called a “one-to-one correspondence” or a “bijection.” It’s important to
get used to both versions of each term, because individual mathematicians
often alternate, even within a single lecture.

7 Inverting functions

Notice that one-to-one and onto are like the two properties required to be
a function (each input gets at most one value, each input gets at least one
value), except that they go in the opposite direction. So if a function f is
both one-to-one and onto, we can define the inverse function f−1 which goes
in the opposite direction. That is, if f : A → B then f−1 : B → A and
f−1(y) = x if and only if f(x) = y. Because f is one-to-one and onto, this
definition picks out one and only one output value x for each input value y.

8 Negating expressions with multiple quan-

tifiers

Let’s use our definition of onto as an excuse to think about negating formal
statements containing more than one quantifier. Our definition was:

∀y ∈ B, ∃x ∈ A, f(x) = y

So a function f is not onto if

¬∀y ∈ B, ∃x ∈ A, f(x) = y

To negate this, we proceed step-by-step, moving the negation inwards.
You’ve seen all the identities involved, so this is largely a matter of being
careful.

6

¬∀y ∈ B, ∃x ∈ A, f(x) = y

≡ ∃y ∈ B,¬∃x ∈ A, f(x) = y

≡ ∃y ∈ B, ∀x ∈ A,¬(f(x) = y)

≡ ∃y ∈ B, ∀x ∈ A, f(x) 6= y

So, if we want to show that f is not onto, we need to find some value y

in B, such that no matter which element x you pick from A, f(x) isn’t equal
to y.

7

