
Set theory proof example

Margaret M. Fleck

16 February 2009

We saw several set theory proofs in class (see slides). Here’s one of the
more complex ones written up neatly, as a model to use in writing your own
proofs.

1 A set theory proof with cartesian products

If we want to show that a set A is a subset of a set B, a standard proof
outline involves picking a random element x from A and then showing that
x must be in B. For example, consider the claim:

Claim 1 For any sets A, B, C, and D, if A ⊆ B and C ⊆ D, then A×C ⊆

B × D.

To start, let’s pick some sets (assuming nothing special about them) and
assume that all the hypotheses of the claim are true.

Proof draft 1: Suppose that A, B, C, and D such that if A ⊆ B

and C ⊆ D.

We need to show that A × C ⊆ B × D.

In order to move forwards, we need to realize that A × C ⊆ B × D can
be translated into an if/then statement. If w ∈ A × C then w ∈ B × D. So
proving this means that we do another step of assuming the hypothesis and
saying we need to prove the conclusion.

Proof draft 2: Suppose that A, B, C, and D such that if A ⊆ B

and C ⊆ D.

We need to show that A × C ⊆ B × D. So suppose that w is an
element of A × C. We need to show that w ∈ B × D.
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To show this, we need to have a clear mental picture of the objects we’re
manipulating. What type of thing is w? It’s a member of A ×C, so it must
be an ordered pair. To manipulate an ordered pair, we often have to name
its two components, e.g. (x, y).

Proof: Suppose that A, B, C, and D such that if A ⊆ B and
C ⊆ D.

We need to show that A × C ⊆ B × D. So suppose that w is an
element of A × C. We need to show that w ∈ B × D.

Since w is an element of A × C, we can write it as w = (x, y)
where x ∈ A and y ∈ C (by the definition of Cartesian product).

Since x ∈ A and A ⊆ B, x ∈ B. Since y ∈ C and C ⊆ D, y ∈ D.
So, using the definition of Cartesian product again, (x, y) ∈ B ×

D. That is, w ∈ B × D.

We’ve shown that any element of A×C is also an element of B×D.
By the definition of subset, this means that A × C ⊆ B × D.
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