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This lecture introduces propositional logic. It closely follows section 1.1
of Rosen, through about p. 12. (We don’t cover bitwise operations.)

1 Announcements

Office hours are now posted on the web page and will be adjusted as needed.
Reminder that Homework 0 is due in class on Friday and that you should

get yourself onto the class newsgroup. Notice that latex source for the home-
work is posted for students who want to learn to use latex, but it is not

required. If you do format your homework, turn it in as hardcopy not
electronically.

When submitting homework, it is not necessary to include the problem
statements. The answers are sufficient.

2 A bit about style

Writing mathematics requires two things. You need to get the logical flow
of ideas correct. And you also need to express yourself in standard style.
Mathematical style is best taught by example and is similar to what happens
in English classes.

Mathematical writing uses a combination of equations and parts that
look superficially like English. Mathematical English is almost like normal
English, but differs in some crucial ways. You are probably familiar with the
fact that physicists use terms like “force” differently from everyone else. Or
the fact that people from England think that “paraffin” is a liquid whereas
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that word refers to a solid substance in the US. We will try to highlight the
places where mathematical English isn’t like normal English.

You will also learn how to make the right choice between an equation and
an equivalent piece of mathematical English. For example, ∧ is a shorthand
symbol for “and.” The shorthand equations are used when we want to look
at a complex structure all at once, e.g. discuss the logical structure of a proof.
When writing the proof itself, it’s usually better to use the longer English
equivalents, because the result is easier to read. There is no hard-and-fast
line here, but we’ll help make sure you don’t go too far in either direction.

3 Propositions

Two systems of logic are commonly used in mathematics: propositional logic
and predicate logic. We’ll start by covering propositional logic.

A proposition is a statement which is true or false (but never both!). For
example, “Urbana is in Illinois” or 2 ≤ 15. It can’t be a question. It also
can’t contain variables, e.g. x ≤ 9 isn’t a proposition.

The lack of variables prevents propositional logic from being useful for
very much, though it has some applications in circuit analysis, databases, and
artificial intelligence. Predicate logic is an upgrade that adds variables. We
will mostly be using predicate logic in this course. We just use propositional
logic to get started.

4 Complex propositions

Statements can be joined together to make more complex statements. For
example, “Urbana is in Illinois and Margaret was born in Wisconsin.” To
talk about complex sequences of statements without making everything too
long, we represent each simple statement by a variable. E.g. if p is “Urbana
is in Illinois” and q is “Margaret was born in Wisconsin”, then the whole
long statement would be “p and q”. Or, using shorthand notation p ∧ q.

The statement p ∧ q is true when both p and q are true. We can express
this with a “truth table”:

2



p q p ∧ q

T T T

T F F

F T F

F F F

We use the value T for “true” and F for “false”. Please don’t use 1 and
0. That makes your math look like a computer program rather than math.

Similarly, ¬p is the shorthand for “not p.” In our example, ¬p would be
“Urbana is not in Illinois.” ¬p is true exactly when p is false.

p ∨ q is the shorthand for “p or q”, which is true when either p or q is
true. Notice that it is also true when both p and q are true, i.e. its true table
is:

p q p ∨ q

T T T

T F T

F T T

F F F

When mathematicians use “or”, this is always how they intend to be
understood. Notice that this is different from normal English, in which “or”
sometimes excludes the possibility that both statements are true. Normal
English “or” sometimes matches mathematical “or” and sometimes another
operation called exclusive or defined by

p q p ⊕ q

T T F

T F T

F T T

F F F

Exclusive or has some important applications in computer science, espe-
cially in encoding strings of letters for security reasons. However, we won’t
see it much in this class.

5 Implication

Two propositions p and q can also be joined into the conditional statement.
“if p, then q.” This has many synonyms in mathematical English, e.g. “p
implies q” or “q follows from p”. Browse the (long) list in Rosen and look
back at it later on, as needed.
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The shorthand for this conditional is p → q and its truth table is
p q p → q

T T T

T F F

F T T

F F T

For example, “If Obama is president, then Obama lives in the White
House” is true. But “if Obama is president, then 2 > 4 is false. All the
examples tend to be a bit artificial, because we don’t have variables yet.

In normal English, we tend not to use conditionals in which the “if”
part is false. E.g. “If Bush is president, then Urbana is in Illinois.” In
mathematical English, such statements occur more often. And, worse, they
are always considered true, no matter whether the “then” part is true or
false. For example, this statement is true: “If Bush is president, then 2 > 4.”

The easiest way to remember the right output values for this operation is
to remember that the value is false in exactly one case: when p is true and
q is false.

Normal English requires that conditional sentences have some sort of
causal connection between the two propositions, i.e. one proposition is true
because the other is true. E.g. “If Helen learns to write C++, she will
get a good job.” It would seem odd if we said “If Urbana is in Illinois, then
Margaret was born in Wisconsin.” because there’s no reason why one follows
from the other. In mathematical English, this statement is just fine: there
doesn’t have to be any causal connection.

In normal English if/then statements, there is frequently a flow of time
involved. Unless we make a special effort to build a model of time, proposi-
tional logic is timeless. This makes the English motivating examples slightly
awkward. It’s not a big problem in mathematics, because mathematical
proofs normally discuss a world that is static. It has a cast of characters
(e.g. variables, sets, functions) with a fixed set of properties, and we are just
reasoning about what those properties are. Only very occasionally do we
talk about taking an object and modifying it.

In computer programming, we often see things that look like conditional
statements, e.g. “if x > 0, then increment y”. But these are commands for
the computer to do something, changing its little world. whereas the similar-
looking mathematical statements are timeless. Formalize what it means for
a computer program to “do what it’s supposed to” (which you’ll see in CS
421) requires modelling how the world changes over time.
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6 Converse, contrapositive, biconditional

The converse of p → q is q → p. The two statements are not equivalent. To
see this, compare the previous truth table with this one:

p q q → p

T T T

T F T

F T F

F F T

The converse mostly occurs in two contexts. First, getting the direction of
implication backwards is a common bug in writing proofs. That is, using the
converse rather than the original statement. Second, the phrase “p implies
q, and conversely” means that p and q are true under exactly the same
conditions. The shorthand for this is the biconditional operator p ↔ q.

p q q ↔ p

T T T

T F F

F T F

F F T

The contrapositive of p → q is formed by swapping the roles of p and q

and negating both of them to get ¬q → ¬p. The contrapositive is equivalent
to the original statement. Here’s a truth table showing why:

p q ¬p ¬q ¬q → ¬p

T T F F T

T F F T F

F T T F T

F F T T T

To figure out the last column of the table, recall that ¬q → ¬p will be
false in only one case: when the if part (¬q) is true and the consequent (¬p)
is false.

Let’s consider what these variations look like in an English example:

• If it’s below zero, my car won’t start.

• converse: If my car won’t start, it’s below zero

• contrapositive: If my car will start, then it’s not below zero.
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7 Complex statements

Very complex statements can be made using combinations of connectives.
E.g. “If it’s below zero or my car does not have gas, then my car won’t
start and I can’t go get groceries.” The shorthand notation is particularly
useful for manipulating complicated statements. For example (as we’ll see
Wednesday), taking the negative of a statement. So, this example has the
form

(p ∨ ¬q) → (¬r ∧ ¬s)

When you try to read a complex set of propositions all glued together
with connectives, there is sometimes a question about which parts to group
together first. English is a bit vague about the rules. So, for example, in
the previous example, you need to use common sense to figure out that “I
can’t go get groceries” is intended to be part of the conclusion of the if/then
statement.

In mathematical shorthand, there are conventions about which parts to
group together first. In particular, you apply the “not” operators first, then
the “and” and “or”. Then you take the results and do the implication oper-
ations. Use parentheses if you intend the reader to group things differently.

This is basically similar to the rules in (say) high-school algebra. Look
at the examples in Rosen.

Rosen points out that there are conventions about applying “and” before
“or.” However, in math it is traditional to use parentheses rather than relying
the reader remembering this distinction.

If you aren’t sure that your reader will group your statement the way you
intended, use parentheses.

You can build truth tables for complex statements, e.g.
p q r q ∧ r (q ∧ r) → p

T T T T T

T F T F T

F T T T F

F F T F T

T T F F T

T F F F T

F T F F T

F F F F T

However, if there are k variables, your table needs 2k lines to cover all
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possible combinations of input truth values. This is cumbersome when there
are more than 2-3 variables.

7


