

CS 173: Discrete Structures

Eric Shaffer

Office Hour: Wed. 1-2, 2215 SC

shaffer1@illinois.edu

Agenda

- What you should know about Number Theory
- Review pseudo-code conventions (Appendix 3)
- Introduction to Set Theory (Section 2.1)
- Quiz

But first...a word about number representations and bugs

Great Moments in Software Engineering

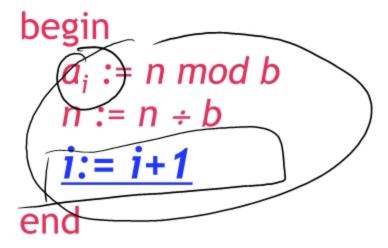
- Ariane 5 is a European launch system designed to deliver payloads into low Earth orbit.
- Ariane 5's first test flight on 4 June 1996 failed, with the rocket self-destructing 37 seconds after launch because of a malfunction in the control software. A data conversion from 64-bit floating point to 16-bit signed integer value caused a processor trap. The floating point number had a value too large to be represented by a 16-bit signed integer. Efficiency considerations had led to the disabling of the software handler (in Ada code) for this trap.
- The loss of more than US\$370 million makes this one of the most expensive computer bugs in history.

Number Systems Reverse Conversion

- Conversion of integer n to base b
- Let a_k, a_{k-1}, \dots, a_0 be the "digits" of the base b number

Procedure convert(*n*,*b*:integers)

```
i := 0 while (n > 0)
```

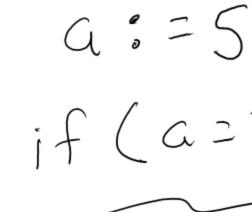


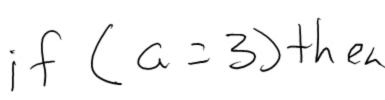
Number Theory things you should know

- a|b
- division algorithm
- mod function
- congruence mod m
 - definition
 - Thm: $a \equiv b \mod m$ iff a = b + km
- GCD and LCM
- Fundamental Theorem of Arithmetic
- Euclidean Algorithm
- number representations and conversions

Pseudo-code

- You should understand the pseudo-code used in the book
- Read Appendix 3 in the textbook
- It's a very, very simple imperative language
- "Procedure" is like a function of method
 - Includes a list of input variables and their types
- Conditionals: "if...then...else"
- Assignment is ":="
- Testing equality "="
- Blocks of code "begin ... end"
- Loops
 - "for <variable> := <initial value> to <final value>
 - In final iteration, variable will be assigned final value
 - E.g. "for i:=0 to 100" will iterate $-\frac{U}{U}$ times





Pseudo-code

while loops

```
while <condition>
  <statement>
  -- or --
 while <condition>
 begin
    <statement$>
 end
```


Pseudo-code

- Some procedures operate on "Lists"
 - You saw an example in HW 0
- For this class, a list is
 - An **ordered** set of values or variables
 - procedure some_sort (l₁,...,l_n: integers)
 - "interchange l₁ and l₂" is used to reorder list elements
 - the text treats them like arrays
- Comments are in braces: "{this is a comment}"

A set is an unordered collection of elements.

Some examples:

{1, 2, 3} is the set containing "1" and "2" and "3."

 $\{1, 1, 2, 3, 3\} = \{1, 2, 3\}$ since repetition is irrelevant.

 $\{1, 2, 3\} = \{3, 2, 1\}$ since sets are unordered.

{1, 2, 3, ...} is a way we denote an infinite set (in this case, the natural numbers).

 \emptyset = {} is the empty set, or the set containing no elements.

Note: $\emptyset \neq \{\emptyset\}$

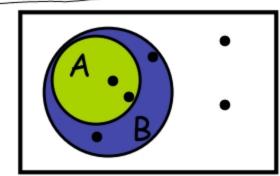
- $x \in S$ means "x is an element of set S."
- $x \notin S$ means "x is not an element of set S."

 $A \subseteq B$ means "A is a subset of B."

or, "B contains A."

or, "every element of A is also in B."

or, $\forall x ((x \in A) \rightarrow (x \in B)).$



Venn Diagram

A⊆B means "A is a subset of B." A⊇B means "A is a superset of B."

A = B if and only if A and B have exactly the same elements.

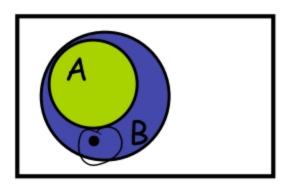
```
iff, A \subseteq B and B \subseteq A iff, A \subseteq B and A \supseteq B iff, \forall x ((x \in A) \leftrightarrow (x \in B)).
```

So to show equality of sets A and B, show:

 $A \subset B$ means "A is a proper subset of B."

- $A \subseteq B$, and $A \neq B$.
- $\forall x ((x \in A) \rightarrow (x \in B)) \land \neg \forall x ((x \in B) \rightarrow (x \in A))$
- $\forall x ((x \in A) \rightarrow (x \in B)) \land \exists x \neg (\neg (x \in B) \lor (x \in A))$
- $\forall x ((x \in A) \rightarrow (x \in B)) \land \exists x ((x \in B) \land \neg (x \in A))$

$$-\sqrt{\forall x} ((x \in A) \rightarrow (x \in B)) \land \exists x ((x \in B) \land (x \notin A))$$



Quick examples:

- $\{1,2,3\} \subseteq \{1,2,3,4,5\}$
- $\{1,2,3\} \subset \{1,2,3,4,5\}$

Is
$$\varnothing \subseteq \{1,2,3\}$$
?

Yes! $\forall x (x \in \emptyset) \rightarrow (x \in \{1,2,3\})$ Vacuously holds, because $(x \in \emptyset)$ is false.

```
Is \varnothing \in \{1,2,3\}? No Is \varnothing \subseteq \{\varnothing,1,2,3\}? Yes!
```

Is
$$\emptyset \in \{\emptyset,1,2,3\}$$
? Yes!

Quiz time:

Is
$$\{x\} \subseteq \{x\}$$
? Yes

Is
$$\{x\} \in \{x, \{x\}\}$$
? Yes

Is
$$\{x\} \subseteq \{x,\{x\}\}$$
? Yes

Is
$$\{x\} \in \{x\}$$
? No

Set Theory - Ways to define sets

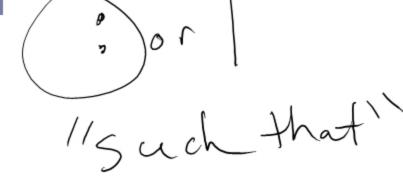
- Explicitly: {John, Paul, George, Ringo}
- Implicitly: {1,2,3,...}, or {2,3,5,7,11,13,17,...}
- Set builder: { x : x is prime }, { x | x is odd }. In general { x : P(x) is true }, where P(x) is some description of the set.

and | are read "such that" or "where"

Ex. Let D(x,y) denote "x is divisible by y." Give another name for $\{x: \forall y ((y > 1) \land (y < x)) \rightarrow \neg D(x,y) \}$.

Primes

Can we use any predicate P to define a set $S = \{x : P(x)\}$?



Set Theory - Russell's Paradox

Can we use **any** predicate P to define a set $S = \{x : P(x)\}$?

Define
$$S = \{x : x \text{ is a set where } x \notin x\}$$
 No!

Then, if $S \in S$, then by defin of S, $S \notin S$.

But, if $S \notin S$, then by defin of $S, S \in S$.

There is a town with a barber who shaves all the people (and only the people) who don't shave themselves.

Set Theory - Cardinality

If S is finite, then the *cardinality* of S, |S|, is the number of distinct elements in S.

If
$$S = \{1,2,3\}, |S| = 3.$$

If
$$S = \{3,3,3,3,3,3\}$$
, $|S| = 1$.

If
$$S = \emptyset$$
, $|S| = 0$.

If
$$S = \{ \emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\} \}, |S| = 3.$$

If
$$S = \{0,1,2,3,...\}$$
, $|S|$ is infinite. (more on this later)

Set Theory - Power sets

If S is a set, then the power set of S is $2^{S} = \{ x : x \subseteq S \}.$

aka P(S)

We say, "P(S) is

the set of all

subsets of S."

If
$$S = \{a\}, 2^{S} = \{\emptyset, \{a\}\}.$$

If
$$S = \{a,b\}, 2^{S} = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}.$$

If
$$S = \emptyset$$
, $2^{S} = {\emptyset}$.

If
$$S = \{\emptyset, \{\emptyset\}\}, \{\emptyset\}, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}.$$

Fact: if S is finite,
$$|2^{S}| = 2^{|S|}$$
. (if $|S| = n$, $|2^{S}| = 2^{n}$)

Set Theory - Cartesian Product

The Cartesian Product of two sets A and B is: $A \times B = \{ \langle a,b \rangle : a \in A \land b \in B \}$

```
If A = {Charlie, Lucy, Linus}, and B = {Brown, VanPelt}, then
```

$$A_1 \times A_2 \times ... \times A_n = \{ \langle a_1, a_2, ..., a_n \rangle : a_1 \in A_1, a_2 \in A_2, a_n \in A_n \}$$

$$A_1 \times A_2 \times ... \times A_n = \{ \langle a_1, a_2, ..., a_n \rangle : a_1 \in A_1, a_2 \in A_2, a_2 \in A_2 \}$$

$$A_1 \times A_2 \times ... \times A_n = \{ \langle a_1, a_2, ..., a_n \rangle : a_1 \in A_1, a_2 \in A_2, a_2 \in A_2 \}$$

$$A_1 \times A_2 \times ... \times A_n = \{ \langle a_1, a_2, ..., a_n \rangle : a_1 \in A_1, a_2 \in A_2, a_2 \in A_2 \}$$

