CS 173 Honors Homework 4 Spring 2009

CS 173: Discrete Mathematical Structures, Spring 2009
Honors Homework 4:
Equivalence Classes and Permutation Groups

Due by 4pm on Wednesday 6 May. Please give to Margaret or push it
under the door of her office (3214 Siebel).

This homework covers some more advanced counting techniques. Specifically we’ll look at some
problems where the number of solutions is reduced due to the symmetry of the problem. The
mathematician George Polya developed the theory behind these counting techniques in 1938. We
won’t cover his entire theory, but we will go over permutation groups, Burnside’s Theorem and
some counting problems involving symmetry.

Before doing these problems, pick up a set of photocopied papers from outside room
2215 SC and read them - they explain the ideas behind permutation groups and
Burnside’s Theorem.

1. Beads on a Necklace [15 points] Count the number of distinct ways to arrange
beads on a necklace, where there are 3 different colors of beads, and 3 total beads
arranged on the necklace. The same color can appear on more than one bead (or
it could appear on none). The symmetry of the necklace reduces the number of
distinct colorings. With a necklace, we can obviously rotate it around. For simplicity,
assume the necklace cannot be flipped over. You can see that symmetry reduces the
number of distinct colorings by comparing a necklace colored “red, blue, red” with
one colored “red, red, blue”. Those two colorings are identical when rotated. We will
count the number of distinct colorings of the necklace using Burnside’s Theorem from
the reading. This involves counting the number of colorings that are invariant under
a given permutation. For example, one possible permutation of the necklace would
be rotating the beads clockwise one position. Under this rotation, the coloring “red,
blue, blue” would become “blue,red,blue”. The coloring“red, red, red” is invariant
under that permutation because the necklace looks the same after the permutation
as it did before the permutation.

(a) How many distinct colorings of the necklace are there when rotational equiva-
lence is ignored?

(b) Define a permutation group for the necklace G = {mg, 71, 2} where the permuta-
tions are clockwise rotations of the necklace and =; is the permutation produced
by i clockwise rotations. For example, if we denote the 3 beads as a, b, ¢, then

abc C . . .
™=\ ab ), which is a permutation based on one clockwise rotation of the
necklace. Bead a moves to the position formerly occupied by bead b, bead b
move to the spot where bead ¢ was, and so on. For each 7;, what is the number
of colorings of the necklace that are invariant under that permutation? hint: the
answer for m is the same as the answer to part a of this question.
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(c) Using Burnside’s Theorem, how many distinct colorings of the necklace exist?
(d) How many distinct colorings would exist if there were 6 beads?

2. Coloring a Triangle [20 points] Imagine we can color the vertices of an equilateral
triangle any of three colors. We will call the three vertices of the triangle a, b, and c.
Rotating and flipping the triangle is allowed. A rotation or flip is a permutation of the
vertices. Note that a flip reflects the triangle across a line through one of the vertices
that bisects the edge opposite that vertex.

(a) How many 3-colored triangles are there when equivalence due to symmetry is
ignored?

(b) What is the permutation group for the triangle under these operations? Explicitly
write out each permutation in the group, using the same notation that the pho-

. . abc .1 .
tocopied pages employ. For example, write ah ) © indicate a permutation

mapping a to a, b to ¢ and ¢ to b.

(c) By counting the triangle colorings that are invariant under each permutation and
using Burnside’s Theorem, how many distinct colorings of the triangle exist?

3. Coloring a Chess Board [5 points] Consider the 2 x 2 chess board described in the
reading. Imagine the 4 squares of the board are labeled a, b, ¢, d starting with « in the
top left corner and proceeding clockwise around the board. We are interested in the
number of distinct ways to color the squares white or black. We can formalize this
be considering functions that map the set of squares {a,b, c,d} to the set of colors
{b, w}. In counting distinct colorings, we will consider permutations based on rotat-
ing the board by 90 degrees. There are 4 such permutations in the permutation group

= ~( abed ([ abed _( abcd ~_( abed
VYO abed )T T dabe )™ T\ edab )™ T\ beda )

We consider two functions f and ¢ to be equivalent if there is a permutation 7; such
that for all squares s, f(m;(s)) = g(s). For example, consider a function f; that
maps the board («a, b, ¢, d) to the colors (w, b, w, w) and another function f, that maps
(a,b,c,d) to (b,w,w,w). Under the permutation 73 you can see that f; is equivalent

to fg.

(a) Write out a table of the 16 functions mapping squares to colors.

(b) The permutation group G divides the 16 functions into 6 equivalence classes.
List these classes (e.g. f3 and f, from above would both be in the same class) .
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4. Equivalence Classes of Functions [10 points] Suppose D and R are two sets and
let G be a permutation group of the set D. We define a binary relation on the set of
all functions from D to R. A function f; is related to a function f; if and only if there
is a permutation 7 in G such that f,(7(d)) = f2(d) for all d in D. In other words, just
as in Problem 3, we are defining a notion of two functions being equivalent under a
permutation = if f; maps 7(d) to the same thing as f, maps d for all d in D. Prove
this binary relation is an equivalence relation.



