CS 173: Discrete Mathematical Structures, Spring 2009
 Honors Homework 1

Due by 4 pm on Wednesday, March 18th. Please give to Margaret or push it under the door of her office (3214 Siebel).

1 The integers mod k

Given a positive integer $k,{ }^{1}$ we can define the set of integers $\bmod k$ to be $\mathbb{Z}_{k}=\{0,1, \ldots, k-1\} .{ }^{2}$ For example, $\mathbb{Z}_{4}=\{0,1,2,3\}$.

If x and y are elements of \mathbb{Z}_{k}, we define their sum and product in \mathbb{Z}_{k} to be

$$
\begin{aligned}
& x+{ }_{k} y=(x+y) \bmod k \\
& x \times_{k} y=(x \times y) \bmod k
\end{aligned}
$$

That is, to add or multiply numbers in \mathbb{Z}_{k}, you combine them using normal addition or multiplication, then remove all factors of k from the result. For example, here's the addition and multiplication tables for \mathbb{Z}_{4}.

$+_{4}$	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	3

\times_{4}	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

2 More properties of operations

Suppose we have a binary operation \star on a set A. An element $e \in A$ is an identity for \star if

$$
\forall x \in A, x \star e=x \text { and } e \star x=x
$$

[^0]Looking at the tables above should convince you that 0 is an identity for addition and 1 is an identity for multiplication in \mathbb{Z}_{k} (for any choice of k) just as they are for addition and multiplication in the normal integers.

Suppose that our operation \star on A has identity e. Suppose that t is an element of A. Then an element d in A is a (two-sided) inverse for t if

$$
d \star t=t \star d=\mathbf{e}
$$

Not every element has an inverse. For example, in the normal integers, 0 has no inverse under the multiplication operation.

3 Problems

The first two problems are not too hard. The third problem is a bit tricky. It may help to work on it for a bit, put it aside to rest, and have another go later.

1. For any k, show that all elements of \mathbb{Z}_{k} have inverses for the addition operation.
2. Under multiplication, elements of \mathbb{Z}_{k} don't always have inverses.
(a) Write out the multiplication table for \mathbb{Z}_{7}. Zero obviously doesn't have an inverse. Find the inverses for all the other elements of \mathbb{Z}_{7}.
(b) Find a non-zero element of \mathbb{Z}_{4} that doesn't have a multiplicative inverse.
3. Given k, there's a simple way to tell whether all non-zero elements of \mathbb{Z}_{k} have multiplicative inverses.
(a) What property does k need to have, in order for all non-zero elements of \mathbb{Z}_{k} to have multiplicative inverses? Explain informally why your answer is right.
To figure this out, it may help to write out multiplication tables for some sample values of k. I recommend starting with 5 and 6 .
(b) Prove that your answer is correct, using the following theorem (a special case of theorem 1 on p. 232 of Rosen).

Theorem: If a and b are positive integers with $\operatorname{GCD}(a, b)=1$, then there are integers s and t such that $1=s a+t b$.

[^0]: ${ }^{1}$ Though in practice k is always at least 2 because you get something pretty limited if $k=1$.
 ${ }^{2}$ There's a classier way to define \mathbb{Z}_{k} using equivalence classes, which you might run into if you look things up on wikipedia. However, we don't yet have enough background to do things that way right now.

