CS 173, Spring 2009 Homework 8

Due in class on Friday, April 17th, 2009
(Total point value: 50 points.)

1. Counting I [10 points] For the following four questions, you do not need to multiply out factorials to reach a final answer. For example, $P(10,4)=\frac{10!}{6!}$ would be acceptable as an answer; you don't have to complete the multiplications and division.
(a) Suppose a set S has 10 elements, how many subsets of S have an odd number of elements?
(b) How many bit-strings of length 100 have exactly 10 zeroes?
(c) How many distinct strings can be formed by the letters in the word BOOTHBAY?
(d) Suppose that after taking a job at Initech you have 7 managers, each of whom sends you one memo per day. Initech memos come in three types: secret, company internal, and already reported by CNET ("public" for short). How many different combinations of memo types could you receive in one day? (E.g. one combination would be 1 secret, 5 internal, and 1 public, which is different from the combination 2 secret, 1 internal, and 4 public.)
2. Counting II [10 points] For the following two questions, you do not need to multiply out factorials to reach a final answer.
(a) How many solutions are there to the equation $x_{1}+x_{2}+x_{3}+x_{4}=17$ when x_{i} is a non-negative integer for $1 \leq i \leq 4$.
(b) The field of bioinformatics makes use of discrete mathematics in many applications. We will consider the problem of counting the number of ways a certain molecule can be constructed. RNA, or ribonucleic acid, is a long molecule that is used by some cells to transfer information. RNA is essentially a chain of bases in which each base is either adenine (A), urasil (U), guanine (G), or cytosine(C). In an RNA chain of 20 bases, suppose there are $4 \mathrm{As}, 5 \mathrm{Us}, 6 \mathrm{Gs}$, and 5 Cs . If the chain must begin with either AC or UG, how many such chains are there?

3. Counting Proofs [10 points]

(a) Prove that following formula holds, for any k and n with $n>k \geq 0$.

$$
\binom{n-1}{k-1}\binom{n}{k+1}\binom{n+1}{k}=\binom{n-1}{k}\binom{n}{k-1}\binom{n+1}{k+1}
$$

(b) Prove that the following holds for any integer $n \geq 2$:

$$
\binom{2 n}{2}=2\binom{n}{2}+n^{2}
$$

4. Structural induction [10 points]

Define a set $M \subseteq \mathbb{Z}^{2}$ as follows
(1) $(3,2) \in M$
(2) If $(x, y) \in M$, then $(3 x-2 y, x) \in M$

Use structural induction to prove that elements of M always have the form $\left(2^{k+1}+1,2^{k}+1\right)$, where k is a natural number. (The point of this problem is to learn how to use structural induction, so you may not rephrase this into a normal proof by induction on k.)

5. Tree induction [10 points]

The Fibonacci trees T_{k} are a special sort of binary trees that are defined as follows.
Base: T_{1} and T_{2} are binary trees with only a single vertex.
Induction: For any $n \geq 3, T_{n}$ consists of a root node with T_{n-1} as its left subtree and T_{n-2} as its right subtree.

Use structural induction to prove that the height of T_{n} is $n-2$, for any $n \geq 2$. (Again, use structural induction rather than looking for an explicit induction variable n.)

