
CS 173, Spring 2009

Homework 8 Solutions

(Total point value: 50 points.)

1. Counting I [10 points] For the following four questions, you do not need to multiply out

factorials to reach a final answer. For example, P (10, 4) = 10!
6! would be acceptable as an

answer; you don’t have to complete the multiplications and division.

(a) Suppose a set S has 10 elements, how many subsets of S have an odd number of ele-

ments?

Solution. Subsets of S having an odd number of elements would have 1, 3, 5, 7, or 9
elements. There are C(10, 1) = 10 subsets of S with one element, C(10, 3) = 10!

7!3! subsets

of S with 3 elements, and so on. So the answer is the sum of all these cases. Therefore,

the number of subsets of S having an odd number of elements is:
∑4

i=0 C(10, 2i + 1)

(b) How many bit-strings of length 100 have exactly 10 zeroes?

Solution. We can count these strings by choosing a subset of 10 positions that will

contain the zeros. So the number of bit-strings of length 100 that have exactly 10 zeros

is : C(100, 10) = 100!
90!10! .

(c) How many distinct strings can be formed by the letters in the word BOOTHBAY?

Solution. The number of strings that can be formed by the letters in the word BOOTH-

BAY, using all the letters is: 8!
2!2! . (This uses the formula for a permutations with indis-

tinguishable objects.)

(d) Suppose that after taking a job at Initech you have 7 managers, each of whom sends

you one memo per day. Initech memos come in three types: secret, company internal,

and already reported by CNET (“public” for short). How many different combinations of

memo types could you receive in one day? (E.g. one combination would be 1 secret, 5

internal, and 1 public, which is different from the combination 2 secret, 1 internal, and

4 public.)

Solution. Since it is not important who sends which type of document, we can use the

formula for combinations with repetition. So the number of different combinations is

equal to: C(3 + 7 − 1, 7) = C(9, 7) = 9!
7!2! .

2. Counting II [10 points] For the following two questions, you do not need to multiply out

factorials to reach a final answer.

(a) How many solutions are there to the equation x1 + x2 + x3 + x4 = 17 when xi is a

non-negative integer for 1 ≤ i ≤ 4.

Solution. This equation has C(17 + 4 − 1, 17) = 20!
17!3! solutions. To see this, imagine the

17 as 17 identical objects. We need to divide them into four bins, i.e. place 3 dividers

into the list of objects. See the pictures used to analyze combinations with repetition.

(b) The field of bioinformatics makes use of discrete mathematics in many applications. We

will consider the problem of counting the number of ways a certain molecule can be

constructed. RNA, or ribonucleic acid, is a long molecule that is used by some cells to

transfer information. RNA is essentially a chain of bases in which each base is either
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adenine (A), urasil (U), guanine (G), or cytosine(C). In an RNA chain of 20 bases, sup-

pose there are 4 As, 5 Us, 6 Gs, and 5 Cs. If the chain must begin with either AC or UG,

how many such chains are there?

Solution. Since the chains must begin with either AC or UG, we have two mutually

exclusive cases. In either case, we need to choose 18 bases (because the first two are

fixed), each of which can be an adenine (A), urasil (U), guanine (G), or cytosine(C). If

the chain starts with AC, we have 3 As, 5 Us, 6 Gs, and 4 Cs left. Therefore, using the

formula for combinations with repetition, there are 18!
3!4!5!6! possibilities. If it starts with

UG, we have 4 As, 4 Us, 5 Gs, and 5 Cs left, so we have 18!
5!5!4!4! chains. Adding the two

cases together, we find that there are 18!
3!4!5!6! + 18!

5!5!4!4! number of chains.

3. Counting Proofs [10 points]

(a) Prove that following formula holds, for any k and n with n > k ≥ 0.

(

n − 1
k − 1

)(

n

k + 1

)(

n + 1
k

)

=

(

n − 1
k

)(

n

k − 1

)(

n + 1
k + 1

)

Solution.

(

n − 1
k − 1

)(

n

k + 1

)(

n + 1
k

)

is equal to:
(n−1)!

(k−1)!(n−k)! ·
n!

(k+1)!(n−k−1)! ·

(n+1)!
k!(n+1−k)! .

By shuffling terms around on the bottoms of the fractions, we can rewrite this equation

as:
(n−1)!

k!(n−1−k)! ·
n!

(k−1)!(n−k+1)! ·
(n+1)!

(k+1)!(n−k)! ,

which is equal to:
(

n − 1
k

)(

n

k − 1

)(

n + 1
k + 1

)

.

(b) Prove that the following holds for any integer n ≥ 2:

(

2n
2

)

= 2

(

n

2

)

+ n2

Solution.

(

2n
2

)

=
2n!

(2n − 2)!2!
=

(2n)(2n − 1)

2
= 2n2

− n

= n2
− n + n2 = n(n − 1) + n2

=
n(n − 1)(n − 2)!

(n − 2)!
+ n2

= 2
n(n − 1)(n − 2)!

(n − 2)!2!
+ n2
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= 2
n!

(n − 2)!2!
+ n2

= 2

(

n

2

)

+ n2

We can also prove this claim by induction:

Proof by induction

Base case: For n = 2

(

2n
2

)

=

(

4
2

)

= 6

and

2

(

n

2

)

+ n2 = 2

(

2
2

)

+ 22 = 6

Induction hypothesis: Assume

(

2n
2

)

= 2

(

n

2

)

+ n2

is true for n.

Induction step: Assuming the claim is true for n, we need to prove it is true for n + 1.

In other words, we need to show:

(

2n + 2
2

)

= 2

(

n + 1
2

)

+ (n + 1)2

First observe:

(

2n + 2
2

)

=

(

2n + 1
1

)

+

(

2n + 1
2

)

= (2n + 1) +

(

2n
1

)

+

(

2n
2

)

= (2n + 1) + 2n +

(

2n
2

)

Using the induction hypothesis we have:

= 4n + 1 + 2

(

n

2

)

+ n2.
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= n2 + (2n + 1) + 2(n +

(

n

2

)

)

= n2 + (2n + 1) + 2(

(

n

1

)

+

(

n

2

)

)

= n2 + (2n + 1) + 2(

(

n + 1
2

)

)

= 2(

(

n + 1
2

)

) + (n + 1)2

and this proves our claim for n + 1.

4. Structural induction [10 points]

Define a set M ⊆ Z
2 as follows

(1) (3, 2) ∈ M

(2) If (x, y) ∈ M , then (3x − 2y, x) ∈ M

Use structural induction to prove that elements of M always have the form (2k+1 + 1, 2k + 1),
where k is a natural number. (The point of this problem is to learn how to use structural

induction, so you may not rephrase this into a normal proof by induction on k.)

Solution.

Base:3 = 20+1 + 1 and 2 = 20 + 1. So the relationship holds for (3, 2).

Induction: Assume that for some (x, y) ∈ M , x = 2k+1 + 1 , and y = 2k + 1.

We must show that the property holds for (3x−2y, x), in other words, that 3x−2y = 2m+1+1,

and x = 2m + 1, for some integer m.

Based on the induction hypothesis we have:

3x − 2y = 3(2k+1 + 1) − 2(2k + 1) = 3 · 2k+1 + 3 − 2k+1 − 2
= 2 · 2k+1 + 1 = 2k+2 + 1

Now if we choose m to be k + 1, we have 3x− 2y = 2k+2 + 1 = 2m+1 + 1 and x = 2k+1 + 1 =
2m + 1. So we have proved the claim.

5. Tree induction [10 points]

The Fibonacci trees Tk are a special sort of binary trees that are defined as follows.

Base: T1 and T2 are binary trees with only a single vertex.

Induction: For any n ≥ 3, Tn consists of a root node with Tn−1 as its left subtree and

Tn−2 as its right subtree.
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Use structural induction to prove that the height of Tn is n − 2, for any n ≥ 2. (Again, use

structural induction rather than looking for an explicit induction variable n.)

Solution. Proof by structural induction.

Base: T2 is a Fibonacci tree with a single vertex and no edges and therefore has height 0.

n − 2 is also equal to 0.

Induction: Suppose that the claim is true for Tk, k < n. We need to show that the claim is

also true for Tn.

Tn consists of a root node with daughters Tn−1 and Tn−2. By the inductive hypothesis, the

claim holds for Tn−1 and Tn−2, so we know that the height of Tn−2 is n − 3 and the height of

Tn−2 is n − 4.

Now, we know that the height of any binary tree is one more than the maximum height of

any of its daughter trees. So we have: height(Tn) = max(height(Tn−1), height(Tn−2)) + 1.

Substituting in the heights of Tn−1 and Tn−2, we find that height(Tn) = (n − 3) + 1 = n − 2,

and this proves the claim.
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