CS 173, Spring 2009 Homework 6

Due in class on Friday, March 20th, 2009 (Total point value: 50 points.)

If you are leaving town early, remember that you can push your homework under the door of Margaret's office (3214 Siebel).

1. Recursive definition of a set [10 points]

(a) Define the set $S \subseteq \mathbb{Z}^2$ as follows:

rule 1: $(0,0) \in S$ rule 2: $(10,0) \in S$ rule 3: If $(x,y) \in S$, then $(y,x) \in S$

rule 4: If $(x, y) \in S$, then $(y, x) \in S$ rule 4: If $(x, y) \in S$, then $(-x, y) \in S$

What points does S contain?

- (b) Suppose that (x, y) and (p, q) are 2D points, whose coordinates might not necessarily be integers. Describe in words how the 2D point $(\frac{x+p}{2}, \frac{y+q}{2})$ is geometrically related to (x, y) and (p, q).
- (c) Suppose we define a set T using rules 1 and 2 above, plus the following rule 5 (but not rules 3 and 4). What points does T contain?

rule 5: If
$$(x,y) \in S$$
 and $(p,q) \in S$, then $(\lfloor \frac{x+p}{2} \rfloor, \lfloor \frac{y+q}{2} \rfloor) \in S$

(d) Suppose that we define a set R using all five rules. Give a picture and a succinct, closed-form description of the set R, showing work and/or briefly justifying your answer.

2. Functions with sets [10 points]

Define two functions g and f as follows, for all positive integer inputs.

$$g(1) = \{1\}$$

$$g(n) = g(n-1) \cup \{n\}$$

$$f(1) = \{1\}$$

$$f(n) = f(n-1) \times g(n)$$

- (a) The inputs to f and g are integers, so the domain for each of them is \mathbb{Z} . What sort of objects do g and f produce as output and, therefore, what is the co-domain for each function?
- (b) Compute the value g(5).
- (c) Compute the value f(3)
- (d) Give a closed-form formula for |f(n)|, as a function of n.

3. **Big-O** [10 points]

For each of the following pairs of functions state whether f(n) = O(g(n)) or $f(n) = \Omega(g(n))$ or $f(n) = \Theta(g(n))$

- (a) $f(n) = [n]^2$ and $g(n) = |n|^2$.
- (b) $f(n) = (log_{10}(n))^2$ and g(n) = n.
- (c) $f(n) = n^{2^n}$ and $g(n) = n^{n^2}$
- (d) f(n) = n! and $g(n) = n^n$
- (e) $f(n) = 2^n + n$ and $g(n) = 3^n$

Determine whether each statement below is true or false.

- (f) If $f(n) = \Theta(g(n))$ and $h(n) = \Theta(g(n))$ then $f(n)h(n) = \Theta(g(n))$.
- (g) If $f(n) = \Omega(g(n))$ and $h(n) = \Omega(g(n))$ then $f(n) + h(n) = \Omega(g(n))$.
- (h) If f(n) = O(g(n)) then $g(n) = \Omega(f(n))$.
- (i) If $f(n) = \Theta(g(n))$ then $g(n) = \Theta(f(n))$
- (j) If $f(n) = log_a(n)$ for a > 2 then $f(n) \neq \Theta(log_2(n))$.

4. Big-O proofs [10 points]

Prove the following statements

- (a) Prove that $f(n) = n^n$ is **not** $O(2^n)$ (hint: use proof by contradiction).
- (b) Prove that $f(n) = n^2 + 8n + 2$ is $\Theta(n^2)$. (hint: remember to prove both halves of this claim)

5. Induction [10 points]

Define the function f as follows:

- f(1) = 1
- f(2) = 5
- f(n+1) = 5f(n) 6f(n-1)
- (a) Compute f(3) and f(4).
- (b) Use strong induction to prove that $f(n) = 3^n 2^n$ for every positive integer n.