CS 173, Spring 2009 Homework 6

Due in class on Friday, March 20th, 2009
(Total point value: 50 points.)
If you are leaving town early, remember that you can push your homework under the door of Margaret's office (3214 Siebel).

1. Recursive definition of a set [10 points]

(a) Define the set $S \subseteq \mathbb{Z}^{2}$ as follows:
rule 1: $(0,0) \in S$
rule 2: $(10,0) \in S$
rule 3: If $(x, y) \in S$, then $(y, x) \in S$
rule 4: If $(x, y) \in S$, then $(-x, y) \in S$
What points does S contain?
(b) Suppose that (x, y) and (p, q) are 2D points, whose coordinates might not necessarily be integers. Describe in words how the 2D point $\left(\frac{x+p}{2}, \frac{y+q}{2}\right)$ is geometrically related to (x, y) and (p, q).
(c) Suppose we define a set T using rules 1 and 2 above, plus the following rule 5 (but not rules 3 and 4). What points does T contain?
rule 5: If $(x, y) \in S$ and $(p, q) \in S$, then $\left(\left\lfloor\frac{x+p}{2}\right\rfloor,\left\lfloor\frac{y+q}{2}\right\rfloor\right) \in S$
(d) Suppose that we define a set R using all five rules. Give a picture and a succinct, closedform description of the set R, showing work and/or briefly justifying your answer.

2. Functions with sets [10 points]

Define two functions g and f as follows, for all positive integer inputs.

$$
\begin{aligned}
& g(1)=\{1\} \\
& g(n)=g(n-1) \cup\{n\} \\
& f(1)=\{1\} \\
& f(n)=f(n-1) \times g(n)
\end{aligned}
$$

(a) The inputs to f and g are integers, so the domain for each of them is \mathbb{Z}. What sort of objects do g and f produce as output and, therefore, what is the co-domain for each function?
(b) Compute the value $g(5)$.
(c) Compute the value $f(3)$
(d) Give a closed-form formula for $|f(n)|$, as a function of n.

3. Big-O [10 points]

For each of the following pairs of functions state whether $f(n)=O(g(n))$ or $f(n)=\Omega(g(n))$ or $f(n)=\Theta(g(n))$
(a) $f(n)=\lceil n\rceil^{2}$ and $g(n)=\lfloor n\rfloor^{2}$.
(b) $f(n)=\left(\log _{10}(n)\right)^{2}$ and $g(n)=n$.
(c) $f(n)=n^{2^{n}}$ and $g(n)=n^{n^{2}}$
(d) $f(n)=n$! and $g(n)=n^{n}$
(e) $f(n)=2^{n}+n$ and $g(n)=3^{n}$

Determine whether each statement below is true or false.
(f) If $f(n)=\Theta(g(n))$ and $h(n)=\Theta(g(n))$ then $f(n) h(n)=\Theta(g(n))$.
(g) If $f(n)=\Omega(g(n))$ and $h(n)=\Omega(g(n))$ then $f(n)+h(n)=\Omega(g(n))$.
(h) If $f(n)=O(g(n))$ then $g(n)=\Omega(f(n))$.
(i) If $f(n)=\Theta(g(n))$ then $g(n)=\Theta(f(n))$
(j) If $f(n)=\log _{a}(n)$ for $a>2$ then $f(n) \neq \Theta\left(\log _{2}(n)\right)$.

4. Big-O proofs [10 points]

Prove the following statements
(a) Prove that $f(n)=n^{n}$ is not $O\left(2^{n}\right)$ (hint: use proof by contradiction).
(b) Prove that $f(n)=n^{2}+8 n+2$ is $\Theta\left(n^{2}\right)$. (hint: remember to prove both halves of this claim)

5. Induction [10 points]

Define the function f as follows:

- $f(1)=1$
- $f(2)=5$
- $f(n+1)=5 f(n)-6 f(n-1)$
(a) Compute $f(3)$ and $f(4)$.
(b) Use strong induction to prove that $f(n)=3^{n}-2^{n}$ for every positive integer n.

