CS 173, Spring 2009 Homework 2 Solutions

1. [8 points] Primes

(a) Express the numbers 350, 105, and 64 as products of primes.

Solution: $350 = 2 \cdot 5^2 \cdot 7$, $105 = 3 \cdot 5 \cdot 7$, and $64 = 2^6$

(b) Compute GCD(350, 105), GCD(105, 64), and LCM(350, 64). Feel free to give large results as products of primes; multiplying them out is not necessary.

Solution:

 $GCD(350, 105) = 5 \cdot 7$ GCD(105, 64) = 1 $LCM(350, 64) = 2^6 \cdot 5^2 \cdot 7$

(c) According to the definitions given in the book (or in lecture 7), which integers are neither prime nor composite?

Solution: All integers which are strictly less than 2.

2. [7 points] Divisibility, congruence mod k

Which of the following statements are correct? Show work or give brief explanations for your answers.

Solution:

- (a) $-6 \mid 30$ is correct because $30 = (-6) \cdot (-5)$.
- (b) $30 \mid -6$ is incorrect because $\nexists k \in \mathbb{Z}$ such that $-6 = 30 \cdot k$.
- (c) $6 \mid -30$ is correct because $-30 = 6 \cdot (-5)$.
- (d) $-19 \equiv 7 \pmod{13}$ is correct because $13 \mid (-19 7)$. Note that $-26 = 13 \cdot (-2)$.
- (e) $-6 \equiv 6 \pmod{4}$ is correct because $4 \mid (-6 6)$. Note that $-12 = 4 \cdot (-3)$.
- (f) $-6 \equiv 6 \mod 24$ is incorrect because $24 \nmid (-6-6)$. Note that $-12 \neq 24 \cdot k$ for any $k \in \mathbb{Z}$.
- (g) $0 \equiv 17 \mod 17$ is correct because 17 | (0 17). Note that $-17 = (-1) \cdot 17$.

3. [10 points] Direct proof using congruence mod k

In the book, you will find several equivalent ways to define congruence mod k. For this problem, use the following definition: for any integers x and y and any positive integer m, $x \equiv y \pmod{m}$ if there is an integer k such that x = y + km.

Using this definition prove that, for all integers x, y, p, q and m, with m > 0, if $x \equiv p \pmod{m}$ and $y \equiv q \pmod{m}$, then $(x^2 + y^2) \equiv (p^2 + q^2) \pmod{m}$.

Solution: Let x, y, p, q and m all be integers satisfying the hypotheses given in the problem. Since $x \equiv p \pmod{m}$, by definition, there exists an integer k such that $x = p + k \cdot m$. Similarly, since $y \equiv q \pmod{m}$, there exists an integer k such that $x = q + k \cdot m$. Squaring both sides of the equations for k and k and then adding them together we obtain

$$\begin{array}{rcl} x^2 + y^2 & = & (p + km)^2 + (q + lm)^2 \\ & = & (p^2 + 2pkm + k^2m^2) + (q^2 + 2qlm + l^2m^2) \\ & = & (p^2 + q^2) + (2pkm + 2qlm + k^2m^2 + l^2m^2) \\ & = & (p^2 + q^2) + (2pk + 2ql + k^2m + l^2m) \cdot m \\ & = & (p^2 + q^2) + t \cdot m, \end{array}$$

where we have let $t = 2pk + 2ql + k^2m + l^2m$. Notice that t is an integer, so, by definition, we have $(x^2 + y^2) \equiv (p^2 + q^2) \pmod{m}$, as desired.

4. [10 points] Proof by contradiction

Consider the following claim

$$\forall x \in \mathbb{R}$$
, if $x^2 - 3x + 2 > 0$, then $x > 2$ or $x < 1$.

(a) State the negation of this claim, moving all instances of "not" onto individual propositions and then making them disappear by inverting the inequalities.

Solution: $\exists x \in \mathbb{R}$ such that $x^2 - 3x + 2 > 0$ and $x \le 2$ and $x \ge 1$. Note that $x \le 2$ and $x \ge 1$ may be rewritten as $1 \le x \le 2$.

(b) Prove the claim using proof by contradiction.

Solution: Let $x \in \mathbb{R}$ such that $x^2 - 3x + 2 > 0$ and $1 \le x \le 2$. Observe that we may factor $x^2 - 3x + 2$ as (x - 2)(x - 1). Since $1 \le x \le 2$, we must have $(x - 2) \le 0$ and $(x - 1) \ge 0$. Therefore, their product is either negative or zero, so $x^2 - 3x + 2 = (x - 2)(x - 1) \le 0$, which contradicts our assumption that $x^2 - 3x + 2 > 0$. So by contradiction we have proven the claim.

5. **[15 points]** Another direct proof

For any two real numbers x and y, the harmonic mean of x and y is $H(x,y) = \frac{2xy}{x+y}$. This is a form of averaging that penalizes the case when either of the inputs is very small, often used for combining two performance numbers when evaluating a computer program.

(a) This definition has a small but important bug. What is it?

Solution: If x + y = 0, then the denominator is zero, so H(x,y) is not defined when x = -y.

(b) The more familiar arithmetic mean is $M(x,y)=\frac{x+y}{2}$. When is H(x,y) equal to M(x,y)?

Solution: Observe that

$$M(x,y) = H(x,y) \implies \frac{x+y}{2} = \frac{2xy}{x+y}$$

$$\implies (x+y)^2 = 4xy$$

$$\implies (x+y)^2 - 4xy = 0$$

$$\implies x^2 - 2xy + y^2 = 0$$

$$\implies (x-y)^2 = 0$$

$$\implies x = y$$

Thus, M(x,y) = H(x,y) when x = y. (And, obviously, when x is not -y, because then H(x,y) isn't defined.)

(c) Rephrase your answer to (b) in the form $\forall x,y\in\mathbb{R}, P(x,y)\to Q(x,y)$, for some suitable choice of predicates P(x,y) and Q(x,y). (Hint: in this case, the predicates are equations.)

Solution: $\forall x, y \in \mathbb{R} \big[(M(x, y) = H(x, y)) \rightarrow (x = y) \big]$

(d) Prove that your answer to (b) is correct.

Solution: Let $x, y \in \mathbb{R}$. Suppose M(x, y) = H(x, y). By the string of implications in part (b), we conclude that x = y. Thus, M(x, y) and H(x, y) are equal only when x = y.

3