CS 173, Spring 2009
 Homework 2 Solutions

1. [8 points] Primes

(a) Express the numbers 350,105 , and 64 as products of primes.

Solution: $350=2 \cdot 5^{2} \cdot 7,105=3 \cdot 5 \cdot 7$, and $64=2^{6}$
(b) Compute $\operatorname{GCD}(350,105), \operatorname{GCD}(105,64)$, and $\operatorname{LCM}(350,64)$. Feel free to give large results as products of primes; multiplying them out is not necessary.

Solution:

$G C D(350,105)=5 \cdot 7$
$G C D(105,64)=1$
$\operatorname{LCM}(350,64)=2^{6} \cdot 5^{2} \cdot 7$
(c) According to the definitions given in the book (or in lecture 7), which integers are neither prime nor composite?

Solution: All integers which are strictly less than 2.
2. [7 points] Divisibility, congruence mod k

Which of the following statements are correct? Show work or give brief explanations for your answers.

Solution:

(a) $-6 \mid 30$ is correct because $30=(-6) \cdot(-5)$.
(b) $30 \mid-6$ is incorrect because $\nexists k \in \mathbb{Z}$ such that $-6=30 \cdot k$.
(c) $6 \mid-30$ is correct because $-30=6 \cdot(-5)$.
(d) $-19 \equiv 7(\bmod 13)$ is correct because $13 \mid(-19-7)$. Note that $-26=13 \cdot(-2)$.
(e) $-6 \equiv 6(\bmod 4)$ is correct because $4 \mid(-6-6)$. Note that $-12=4 \cdot(-3)$.
(f) $-6 \equiv 6 \bmod 24$ is incorrect because $24 \nmid(-6-6)$. Note that $-12 \neq 24 \cdot k$ for any $k \in \mathbb{Z}$.
(g) $0 \equiv 17 \bmod 17$ is correct because $17 \mid(0-17)$. Note that $-17=(-1) \cdot 17$.
3. [10 points] Direct proof using congruence mod k

In the book, you will find several equivalent ways to define congruence mod k. For this problem, use the following definition: for any integers x and y and any positive integer m, $x \equiv y(\bmod m)$ if there is an integer k such that $x=y+k m$.
Using this definition prove that, for all integers x, y, p, q and m, with $m>0$, if $x \equiv p(\bmod m)$ and $y \equiv q(\bmod m)$, then $\left(x^{2}+y^{2}\right) \equiv\left(p^{2}+q^{2}\right)(\bmod m)$.

Solution: Let x, y, p, q and m all be integers satisfying the hypotheses given in the problem. Since $x \equiv p(\bmod m)$, by definition, there exists an integer k such that $x=p+k \cdot m$. Similarly, since $y \equiv q(\bmod m)$, there exists an integer l such that $x=q+l \cdot m$. Squaring both sides of the equations for x and y and then adding them together we obtain

$$
\begin{aligned}
x^{2}+y^{2} & =(p+k m)^{2}+(q+l m)^{2} \\
& =\left(p^{2}+2 p k m+k^{2} m^{2}\right)+\left(q^{2}+2 q l m+l^{2} m^{2}\right) \\
& =\left(p^{2}+q^{2}\right)+\left(2 p k m+2 q l m+k^{2} m^{2}+l^{2} m^{2}\right) \\
& =\left(p^{2}+q^{2}\right)+\left(2 p k+2 q l+k^{2} m+l^{2} m\right) \cdot m \\
& =\left(p^{2}+q^{2}\right)+t \cdot m,
\end{aligned}
$$

where we have let $t=2 p k+2 q l+k^{2} m+l^{2} m$. Notice that t is an integer, so, by definition, we have $\left(x^{2}+y^{2}\right) \equiv\left(p^{2}+q^{2}\right)(\bmod m)$, as desired.
4. [10 points] Proof by contradiction

Consider the following claim
$\forall x \in \mathbb{R}$, if $x^{2}-3 x+2>0$, then $x>2$ or $x<1$.
(a) State the negation of this claim, moving all instances of "not" onto individual propositions and then making them disappear by inverting the inequalities.

Solution: $\exists x \in \mathbb{R}$ such that $x^{2}-3 x+2>0$ and $x \leq 2$ and $x \geq 1$.
Note that $x \leq 2$ and $x \geq 1$ may be rewritten as $1 \leq x \leq 2$.
(b) Prove the claim using proof by contradiction.

Solution: Let $x \in \mathbb{R}$ such that $x^{2}-3 x+2>0$ and $1 \leq x \leq 2$. Observe that we may factor $x^{2}-3 x+2$ as $(x-2)(x-1)$. Since $1 \leq x \leq 2$, we must have $(x-2) \leq 0$ and $(x-1) \geq 0$. Therefore, their product is either negative or zero, so $x^{2}-3 x+2=(x-2)(x-1) \leq 0$, which contradicts our assumption that $x^{2}-3 x+2>0$. So by contradiction we have proven the claim.
5. [15 points] Another direct proof

For any two real numbers x and y, the harmonic mean of x and y is $H(x, y)=\frac{2 x y}{x+y}$. This is a form of averaging that penalizes the case when either of the inputs is very small, often used for combining two performance numbers when evaluating a computer program.
(a) This definition has a small but important bug. What is it?

Solution: If $x+y=0$, then the denominator is zero, so $H(x, y)$ is not defined when $x=-y$.
(b) The more familiar arithmetic mean is $M(x, y)=\frac{x+y}{2}$. When is $H(x, y)$ equal to $M(x, y)$?

Solution: Observe that

$$
\begin{aligned}
M(x, y)=H(x, y) & \Longrightarrow \frac{x+y}{2}=\frac{2 x y}{x+y} \\
& \Longrightarrow(x+y)^{2}=4 x y \\
& \Longrightarrow(x+y)^{2}-4 x y=0 \\
& \Longrightarrow x^{2}-2 x y+y^{2}=0 \\
& \Longrightarrow(x-y)^{2}=0 \\
& \Longrightarrow x=y
\end{aligned}
$$

Thus, $M(x, y)=H(x, y)$ when $x=y$. (And, obviously, when x is not $-y$, because then $H(x, y)$ isn't defined.)
(c) Rephrase your answer to (b) in the form $\forall x, y \in \mathbb{R}, P(x, y) \rightarrow Q(x, y)$, for some suitable choice of predicates $P(x, y)$ and $Q(x, y)$. (Hint: in this case, the predicates are equations.)

Solution: $\forall x, y \in \mathbb{R}[(M(x, y)=H(x, y)) \rightarrow(x=y)]$
(d) Prove that your answer to (b) is correct.

Solution: Let $x, y \in \mathbb{R}$. Suppose $M(x, y)=H(x, y)$. By the string of implications in part (b), we conclude that $x=y$. Thus, $M(x, y)$ and $H(x, y)$ are equal only when $x=y$.

