
CS 173: Discrete Mathematical Structures, Spring 2009

Homework 11 Solutions

1. [10 points] Proving an operation well-defined

Suppose that A = R
2−{(0, 0)}, i.e A is 2D space minus the origin. We can define an equivalence

relation ∼ on A as follows:

(x, y) ∼ (p, q) if and only if there is a positive real number λ such that (x, y) = λ(p, q)
i.e. x = λp and y = λq.

This relation treats two points as equivalent if they lie on the same ray, so each equivalence class

of ∼ is a ray from the origin. (We saw a 3D version of this relation in lecture 36.)

We can define addition on these rays as follows:

[(x, y)] + [(p, q)] = [(xq + yp, yq − xp)]

To understand where this formula comes from, think about each equivalence class as represented

by the ray with unit length. The y coordinate of this ray is the sine of its angle and the x

coordinate is its cosine. This addition formula is the formula for computing the sine and cosine

of the sum of two angles. This formula is used in computer graphics to rotate geometric objects.

Prove that this ray addition operation is well-defined. That is, pick two representative elements

from each of the input equivalence classes and show that the corresponding outputs are in the

same equivalence class.

Solution: Let us pick two different representatives for each input: (x, y) ∼ (v,w) and (p, q) ∼
(r, s). In order to prove that the function + is well defined, we need to show that the outputs we

get are equivalent: (xq + yp, yq − xp) ∼ (vs + wr,ws − vr).

We know that since (x, y) ∼ (v,w), there exists a positive real number λ1 such that x = λ1v and

y = λ1w. Also since (p, q) ∼ (r, s) we must have that there exists a positive real number λ2 such

that p = λ2r and q = λ2s. From these we have that,

(xq + yp, yq − xp)

= (λ1v · λ2s + λ1w · λ2r, λ1w · λ2s − λ1v · λ2r)

= (λ1λ2(vs + wr), λ1λ2(ws − vr))

= λ1λ2((vs + wr), (ws − vr))

Since both λ1 and λ2 are positive real numbers, λ1λ2 is also a positive real number. So, (xq +
yp, yq − xp) ∼ (vs + wr,ws − vr) by the definition of ∼. This completes the proof.
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2. [10 points] To infinity, and beyond!

We have seen that it is possible to compare the size, or cardinality, of infinite sets. It is possible to

prove that two infinite sets A and B have the same cardinality by finding a function f : A → B

and proving that function is both one-to-one and onto. A set is countably infinite if it has the same

cardinality as the positive integers.

We have also seen a proof demonstrating that set of the real numbers is in some sense larger

than the set of positive integers. In 1873, Georg Cantor proved a similar fact by showing that

for any set S, there is no function from S onto its power set P (S). This means that for any set

S, the power set P (S) is always larger than S.

(a) Prove that the set of positive integers that are multiples of 10 is countably infinite.

Solution: Let us denote the set of positive integers that are multiples of 10 by A. We can

prove the claim by defining a function f : Z
+ → A such that f(x) = 10x. For any two

arbitrary inputs x and y, if f(x) = f(y), then 10x = 10y and so x = y. So, f is one-to-one.

Also for every a ∈ A, the number z = a

10
is a positive integer because a is positive and a

multiple of 10. And f(z) = a. So, f is also onto. So f is a one-to-one correspondence.

(b) How many sizes of infinite sets are there? In other words, how many different infinite

cardinalities are there? Consider what Cantor’s Theorem says about the cardinality of P (N)
and the cardinality of P (P (N)) and...

Solution: By Cantor’s theorem, the cardinality of P (N) is larger than cardinality of N, the

cardinality of P (P (N)) is larger than cardinality of P (N) and so on. Similarly for the set of

reals R, the set of positive integers, even integers, odd integers, . . .. So ultimately there is

an infinite number of infinite cardinalities out there.
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