
CS 173: Discrete Mathematical Structures, Spring 2009
Homework 10

Due at class on Wednesday, May 6, 2009 (20 points total)

1. [10 points] Proving an operation well-defined

Suppose that A = R2−{(0, 0)}, i.e A is 2D space minus the origin. We can define an equivalence
relation ∼ on A as follows:

(x, y) ∼ (p, q) if and only if there is a positive real number λ such that (x, y) = λ(p, q)
i.e. x = λp and y = λq.

This relation treats two points as equivalent if they lie on the same ray, so each equivalence class
of ∼ is a ray from the origin. (We saw a 3D version of this relation in lecture 36.)

We can define addition on these rays as follows:

[(x, y)] + [(p, q)] = [(xq + yp, yq − xp)]

To understand where this formula comes from, think about each equivalence class as represented
by the ray with unit length. The y coordinate of this ray is the sine of its angle and the x
coordinate is its cosine. This addition formula is the formula for computing the sine and cosine
of the sum of two angles. This formula is used in computer graphics to rotate geometric objects.

Prove that this ray addition operation is well-defined. That is, pick two representative elements
from each of the input equivalence classes and show that the corresponding outputs are in the
same equivalence class.

2. [10 points] To infinity, and beyond!

We have seen that it is possible to compare the size, or cardinality, of infinite sets. It is possible to
prove that two infinite sets A and B have the same cardinality by finding a function f : A → B
and proving that function is both one-to-one and onto. A set is countably infinite if it has the same
cardinality as the positive integers.

We have also seen a proof demonstrating that set of the real numbers is in some sense larger
than the set of positive integers. In 1873, Georg Cantor proved a similar fact by showing that
for any set S, there is no function from S onto its power set P (S). This means that for any set
S, the power set P (S) is always larger than S.

(a) Prove that the set of positive integers that are multiples of 10 is countably infinite.

(b) How many sizes of infinite sets are there? In other words, how many different infinite
cardinalities are there? Consider what Cantor’s Theorem says about the cardinality of P (N)
and the cardinality of P (P (N)) and...
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