CS 173, Spring 2009 Homework 10 Solutions

(Total point value: 50 points.)

1. [10 points] Paths and Circuits in Graphs

(a) Under what conditions does the graph $K_{m, n}$ have an Eulerian circuit? What has to be true about m and n ?

[Solution]

m and n must both be even and greater than zero, which we can see by the theorem for Eulerian circuits from lecture (every vertex has to have even degree). Since $K_{m, n}$ is a complete bipartite graph, any vertex in the size m partition is connected to (exactly) every vertex in the size n partition. Thus n must be even. The same reasoning holds for any vertex in the n partition, so m must be even as well. This only holds if neither m nor n is zero; otherwise, there would be no edges in the graph to form a circuit from.
(b) Under what conditions does the graph Q_{n} have an Eulerian circuit? What has to be true about n ?

[Solution]

Each vertex must have even degree, so n must be even and greater than zero. Q_{2} is degree 2 at each vertex and has a clear Eulerian circuit since it is isomorphic to C_{4}. The degree of each vertex increases by one as n increases by one, so the degree will be even exactly when n is even. Also note that Q_{0} does not contain any cycles by the textbook definition (looping paths of length greater than zero, p.623), so n cannot equal zero.
(c) Consider the complete graph K_{n}. Suppose we pick two vertices u and v. A path of length k between u and v is a sequence of k edges starting at u and ending at v. Consider a path in which no vertex or edge is visited more than once. How many different such paths of length 4 are there between u and v, assuming $n \geq 5$? Can you generalize this result and give a formula for the number of such paths of length k in K_{n} when $n>k$?

[Solution]

Since every vertex is adjacent to every other vertex, we can build a path by choosing a sequence of distinct vertices that represents four edges: $u, x_{1}, x_{2}, x_{3}, v$. Note that if we never repeat vertices, we will never reuse edges. Starting at u, there are $n-2$ possible choices for x_{1}. Once we visit x_{1}, we have $n-3$ possible choices for x_{2}. and then $n-4$ possible candidates for x_{3}. At this point, the path completes by going directly to v. Using the formula for permutations, there are $(n-2)(n-3)(n-4)$ ways to choose a path of length 4.

We can generalize this to find the number of possible paths of length k : $(n-2)(n-3)(n-$ 4)... $(n-k+1)(n-k)$.
2. [10 points] Graph Diameters

On a connected simple graph G we can measure the distance between two distinct vertices v_{i} and v_{j} as the number of edges on the shortest path between them. The diameter of a graph G is the maximum distance between any two distinct vertices in G.
(a) What are the diameters of the following graphs: K_{n}, C_{n}, and W_{n} ?

[Solution]

Since every vertex has an edge to every other vertex of K_{n}, the diameter is 1 .
The maximum distance in C_{n} is halfway around the circuit, which is $\left\lfloor\frac{n}{2}\right\rfloor$.
For W_{n}, consider any two vertices. They are either adjacent or there is a path of length 2 between them through the center. Thus the diameter is 2 .
(b) Prove by induction that the diameter of the n-dimensonal hypercube Q_{n} is n.

[Solution]

Base: Q_{1} has one edge, so the diameter is 1 .
Inductive step: Assume that the claim is true for the $n=k$ case: the diameter of Q_{k} is k. We will now show that it is true for $n=k+1$.
In order to achieve this, we need to show that the maximum distance between all pairs of nodes is $k+1$. Recall that Q_{k+1} is comprised of two copies of Q_{k}, connected at corresponding vertices. For any two u and v that we choose, there are two possibilities: either both in the same Q_{k} subgraph within Q_{k+1} or separated into the two Q_{k} subgraphs. If u and v are in the same Q_{k} subgraph, the distance between them is k or less by the inductive hypothesis.
If u and v are in different Q_{k} subgraphs, consider the vertex v^{\prime} that is the corresponding copy of v in the other Q_{k}. By the inductive hypothesis, there is a shortest path $P_{u, v^{\prime}}$ of length k or less between u and v^{\prime}. We can add the edge $\left\{v, v^{\prime}\right\}$ to the end of $P_{u, v^{\prime}}$ to get a path $P_{u, v}$ from u to v. Note that $P_{u, v}$ is a path of length $k+1$ or less between any u and v. The picture below illustrates a choice of u, v^{\prime}, and v on Q_{3}. A possible $P_{u, v}$ is indicated by the bold edges.

Since distance is defined using shortest paths, we will now show that $P_{u, v}$ is a shortest path between u and v. We can show this by contradiction: if there was another 'shorter' path between u and v, we would be able to find a shorter path than $P_{u, v^{\prime}}$ between u and v^{\prime}. This is done by translating all edges of the path to the same Q_{k} subgraph as u, v^{\prime} and removing the edges that transition between the Q_{k} subgraphs. Since $P_{u, v^{\prime}}$ is a shortest path, this is a contradiction, so $P_{u, v}$ must also be shortest.
A remaining technicality is to show that there is at least one pair of vertices with distance $k+1$ in Q_{k+1}. (Otherwise it could be possible that all pairs are k or less apart.) By the inductive hypothesis, there is a u and a v^{\prime} that are distance k from each other. We can use
the v that corresponds to v^{\prime} to make a path $P_{u, v}$, which will be a shortest from u to v of length $k+1$ by the arguments above. Therefore we have found a pair of vertices that has distance $k+1$.
Thus the distance between any two vertices in Q_{k+1} is $k+1$ or less, and the diameter is $k+1$, which is what we wanted to show.

3. [10 points] Properties of Relations

(a) The relation E relates intervals of the real line that abut one another. Specifically $(x, y) E(p, q)$ if and only if $y=p$ or $x=q$. E.g. $(2,3)$ and $(1.5,2)$ are related because they share the common endpoint 2. Using a specific concrete counter-example, prove that this is not an equivalence relation.

[Solution]

In order to be an equivalence relation, E needs to be reflexive. However, it is not reflexive, because $(1,2) \boldsymbol{E}(1,2)$. Or, alternatively, it's not transitive. For example, $(1,2) E(2,3)$ and $(2,3) E(3,4)$ but it's not the case that $(1,2) E(3,4)$.
(b) Suppose that Q is the relation on positive real numbers such that $x Q y$ if and only if $x y=1$. Is Q reflexive, irreflexive, both, or neither? Is Q transitive? Briefly justify your answers.

[Solution]

Q is not reflexive, since $x Q x$ if $x=3 . Q$ is not irreflexive because $x Q x$ if $x=1$.
Q is not transitive either. Consider $x=2, y=\frac{1}{2}$, and $z=2: x Q y$ and $y Q z$ but $x Q z$.
(c) Define the relation T on the set \mathbb{N}^{3} by saying that $(x, y, z) T(p, q, r)$ if and only if $x+y+z=$ $p+q+r$. List three elements of $[(1,2,3)]$ and also one element of \mathbb{N}^{3} that is not in $[(1,2,3)]$. [Solution]
$(1,2,3),(2,1,3),(5,0,1) \in[(1,2,3)]$, since the sum of the coordinates is 6 for all the points. $(1,2,4) \notin[(1,2,3)]$, because the sums of the coordinates are different (7 vs .6).

4. [10 points] Proving relation properties

(a) Let \ll be the relation on \mathbb{Z}^{2} such that $(x, y) \ll(p, q)$ if and only if either $x<p$, or else $x=p$ and $y \leq q$. That is, when the first coordinates are different, they determine the ordering of pairs, e.g. $(0,8) \ll(1,3)$. But when the first coordinates are the same, we compare the second coordinates, e.g. $(1,3) \ll(1,8)$. Prove that \ll is antisymmetric.

[Solution]

Using the second definition of antisymmetric from lecture 34, we need to show: $\forall(x, y),(p, q) \in$ $\mathbb{Z}^{2},(x, y) \ll(p, q)$ and $(p, q) \ll(x, y)$ implies $(x, y)=(p, q)$.
$(x, y) \ll(p, q)$ means that either $x<p$ or both $x=p$ and $y \leq q$. Similarly, $(p, q) \ll(x, y)$ means that either $p<x$ or both $p=x$ and $q \leq y$. If both $(x, y) \ll(p, q)$ and $(p, q) \ll(x, y)$, x must equal p to be consistent between both definitions. Consequently, $y \leq q$ and $q \leq y$, so we conclude $y=q$ and $(x, y)=(p, q)$. This is what we needed to show.
(b) Let \sim be the relation on \mathbb{Z} such that $x \sim y$ if and only if $4 \mid 3 x+5 y$. Prove that \sim is transitive.

[Solution]

We need to show $\forall x, y, z \in \mathbb{Z}, x \sim y$ and $y \sim z$ implies $x \sim z$.
If $x \sim y$ and $y \sim z$, then we have $4 \mid 3 x+5 y$ and $4 \mid 3 y+5 z$. By the definition of divides, there are some $a, b \in \mathbb{Z}$ such that $4 a=3 x+5 y$ and $4 b=3 y+5 z$. Rearranging these equations, we know $3 x=4 a-5 y$ and similarly $5 z=4 b-3 y$.

Now consider $3 x+5 z$. From our equations above, $3 x+5 z=(4 a-5 y)+(4 b-3 y)=$ $4 a+4 b-8 y=4(a+b-2 y)$. Since $(a+b-2 y)$ is an integer, we have $4 \mid 3 x+5 z$ and $x \sim z$, by the definitions of divides and \sim. Thus we've shown that \sim is transitive.

5. [10 points] A Probabilistic Algorithm

In the last homework, we saw an algorithm to verify polynomial identities based on the binomial theorem. In this problem, we will consider a probabilistic algorithm to verify polynomial identities of the form:

$$
\left(a_{1} x+a_{2}\right)^{n}=b_{0} x^{n}+b_{1} x^{n-1}+\ldots+b_{n-1} x^{1}+b_{n}
$$

where n is a positive integer and the a_{i} and b_{i} are non-negative integers. We will refer to the lefthand side of the identity as $G(x)$ and the right-hand side as $F(x)$, so we have $G(x)=\left(a_{1} x+a_{2}\right)^{n}$ and $F(x)=b_{0} x^{n}+b_{1} x^{n-1}+\ldots+b_{n-1} x^{1}+b_{n}$
One way to verify the identity is to use an algorithm to test each coefficient generated by $G(x)$ and make sure it matches the corresponding coefficient in $F(x)$. This is similar to the algorithm on the last homework assignment and would require $\Theta\left(n^{2}\right)$ operations.
Another option would be to randomly pick a value for x and verify that the two sides of the equation yield the same answer. This would be a kind of probabilistic algorithm, in that it would yield the right answer when $G(x)=F(x)$ but not always give us the right answer when $G(x) \neq F(x)$. In analyzing this algorithm we need to consider both how many operations it will perform and the probability that it will give us an incorrect answer. Here is the pseudo-code for the algorithm:

```
procedure ProbablyVerify \(\left(x, a_{1}, a_{2}, n, b_{0} \ldots, b_{n}\right)\)
binomial \(:=\left(a_{1} x\right)+a_{2}\)
\(g:=\) binomial
for \(i:=2\) to \(n\)
begin
    \(g:=g \cdot\) binomial
end
\(f:=0\)
xpower \(:=1\)
for \(j:=0\) to \(n\)
begin
    \(f:=f+\left(b_{n-j} \cdot x p o w e r\right)\)
    xpower \(:=\) xpower \(\cdot x\)
end
if \((g=f)\) then
    matches \(:=\) true
else
    matches \(:=\) false
return matches
```

(a) State a big-theta bound on the number of operations done by the procedure ProbablyVerify in terms of the degree of the polynomial which is given by the input n.
[Solution]
The first for loop runs $n-1$ times, so there are $\Theta(n)$ operations. The second loop runs $n+1$
times, which gives us another $\Theta(n)$ operations. The pseudocode outside of the loops (including the if statement) give some additional constant number of operations. All together, the number of operations will be $\Theta(n)$.
(b) The procedure will give an incorrect answer when we choose a specific value $x=c$ such that $G(c)=F(c)$, but it is not true that for all real numbers x that $G(x)=F(x)$. This happens when we accidentally choose a value c such that $G(c)-F(c)=0$. In other words, we chose a value c that is a root of the polynomial equation $G(x)-F(x)=0$. A degree n polynomial has at most n distinct roots. Given that fact, if we choose an integer x uniformly at random from the range 0 to m, for what value of m is the probability of selecting a root definitely at or below 0.01? Explain your answer.

[Solution]

Let's consider the worse case, which is that all n roots are non-negative integers. And that the roots are fairly small, so that when we pick our bound m, the roots are all $\leq m$.
In this case, the probability of choosing a root at random will be $\frac{n}{m+1}$. Now let's find the m where the bound holds, where p is the probability of selecting a root:

$$
\begin{gathered}
0.01=\frac{1}{100} \geq \frac{n}{m+1} \geq p \\
\frac{m+1}{100} \geq n \\
m \geq 100 n-1
\end{gathered}
$$

Thus when m is $100 n-1$, the probability of choosing a root is at or below 0.01 .

