
CS 173, Spring 2009

Homework 10 Solutions

(Total point value: 50 points.)

1. [10 points] Paths and Circuits in Graphs

(a) Under what conditions does the graph Km,n have an Eulerian circuit? What has to be true

about m and n?

[Solution]

m and n must both be even and greater than zero, which we can see by the theorem for

Eulerian circuits from lecture (every vertex has to have even degree). Since Km,n is a

complete bipartite graph, any vertex in the size m partition is connected to (exactly) every

vertex in the size n partition. Thus n must be even. The same reasoning holds for any

vertex in the n partition, so m must be even as well. This only holds if neither m nor n is

zero; otherwise, there would be no edges in the graph to form a circuit from.

(b) Under what conditions does the graph Qn have an Eulerian circuit? What has to be true

about n?

[Solution]

Each vertex must have even degree, so n must be even and greater than zero. Q2 is degree

2 at each vertex and has a clear Eulerian circuit since it is isomorphic to C4. The degree of

each vertex increases by one as n increases by one, so the degree will be even exactly when

n is even. Also note that Q0 does not contain any cycles by the textbook definition (looping

paths of length greater than zero, p.623), so n cannot equal zero.

(c) Consider the complete graph Kn. Suppose we pick two vertices u and v. A path of length

k between u and v is a sequence of k edges starting at u and ending at v. Consider a path

in which no vertex or edge is visited more than once. How many different such paths

of length 4 are there between u and v, assuming n ≥ 5? Can you generalize this result and

give a formula for the number of such paths of length k in Kn when n > k?

[Solution]

Since every vertex is adjacent to every other vertex, we can build a path by choosing a

sequence of distinct vertices that represents four edges: u, x1, x2, x3, v. Note that if we

never repeat vertices, we will never reuse edges. Starting at u, there are n − 2 possible

choices for x1. Once we visit x1, we have n − 3 possible choices for x2. and then n − 4
possible candidates for x3. At this point, the path completes by going directly to v. Using

the formula for permutations, there are (n−2)(n−3)(n−4) ways to choose a path of length

4.

We can generalize this to find the number of possible paths of length k: (n − 2)(n − 3)(n −
4)...(n − k + 1)(n − k).

2. [10 points] Graph Diameters

On a connected simple graph G we can measure the distance between two distinct vertices vi

and vj as the number of edges on the shortest path between them. The diameter of a graph G is

the maximum distance between any two distinct vertices in G.
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(a) What are the diameters of the following graphs: Kn, Cn, and Wn?

[Solution]

Since every vertex has an edge to every other vertex of Kn, the diameter is 1.

The maximum distance in Cn is halfway around the circuit, which is ⌊n
2
⌋.

For Wn, consider any two vertices. They are either adjacent or there is a path of length 2
between them through the center. Thus the diameter is 2.

(b) Prove by induction that the diameter of the n-dimensonal hypercube Qn is n.

[Solution]

Base: Q1 has one edge, so the diameter is 1.

Inductive step: Assume that the claim is true for the n = k case: the diameter of Qk is k. We

will now show that it is true for n = k + 1.

In order to achieve this, we need to show that the maximum distance between all pairs

of nodes is k + 1. Recall that Qk+1 is comprised of two copies of Qk, connected at corre-

sponding vertices. For any two u and v that we choose, there are two possibilities: either

both in the same Qk subgraph within Qk+1 or separated into the two Qk subgraphs. If u

and v are in the same Qk subgraph, the distance between them is k or less by the inductive

hypothesis.

If u and v are in different Qk subgraphs, consider the vertex v′ that is the corresponding

copy of v in the other Qk. By the inductive hypothesis, there is a shortest path Pu,v′ of

length k or less between u and v′. We can add the edge {v, v′} to the end of Pu,v′ to get a

path Pu,v from u to v. Note that Pu,v is a path of length k + 1 or less between any u and v.

The picture below illustrates a choice of u, v′, and v on Q3. A possible Pu,v is indicated by

the bold edges.

u

v’

vQ2

Q2

Since distance is defined using shortest paths, we will now show that Pu,v is a shortest path

between u and v. We can show this by contradiction: if there was another ‘shorter’ path

between u and v, we would be able to find a shorter path than Pu,v′ between u and v′. This

is done by translating all edges of the path to the same Qk subgraph as u,v′ and removing

the edges that transition between the Qk subgraphs. Since Pu,v′ is a shortest path, this is a

contradiction, so Pu,v must also be shortest.

A remaining technicality is to show that there is at least one pair of vertices with distance

k + 1 in Qk+1. (Otherwise it could be possible that all pairs are k or less apart.) By the

inductive hypothesis, there is a u and a v′ that are distance k from each other. We can use
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the v that corresponds to v′ to make a path Pu,v, which will be a shortest from u to v of

length k + 1 by the arguments above. Therefore we have found a pair of vertices that has

distance k + 1.

Thus the distance between any two vertices in Qk+1 is k + 1 or less, and the diameter is

k + 1, which is what we wanted to show.

3. [10 points] Properties of Relations

(a) The relation E relates intervals of the real line that abut one another. Specifically (x, y)E(p, q)
if and only if y = p or x = q. E.g. (2, 3) and (1.5, 2) are related because they share the

common endpoint 2. Using a specific concrete counter-example, prove that this is not an

equivalence relation.

[Solution]

In order to be an equivalence relation, E needs to be reflexive. However, it is not reflexive,

because (1, 2) 6E(1, 2). Or, alternatively, it’s not transitive. For example, (1, 2)E(2, 3) and

(2, 3)E(3, 4) but it’s not the case that (1, 2)E(3, 4).

(b) Suppose that Q is the relation on positive real numbers such that xQy if and only if xy = 1.

Is Q reflexive, irreflexive, both, or neither? Is Q transitive? Briefly justify your answers.

[Solution]

Q is not reflexive, since x 6 Qx if x = 3. Q is not irreflexive because xQx if x = 1.

Q is not transitive either. Consider x = 2, y = 1

2
, and z = 2: xQy and yQz but x 6Qz.

(c) Define the relation T on the set N
3 by saying that (x, y, z)T (p, q, r) if and only if x+ y + z =

p+ q + r. List three elements of [(1, 2, 3)] and also one element of N
3 that is not in [(1, 2, 3)].

[Solution]

(1, 2, 3), (2, 1, 3), (5, 0, 1) ∈ [(1, 2, 3)], since the sum of the coordinates is 6 for all the points.

(1, 2, 4) 6∈ [(1, 2, 3)], because the sums of the coordinates are different (7 vs. 6).

4. [10 points] Proving relation properties

(a) Let ≪ be the relation on Z
2 such that (x, y) ≪ (p, q) if and only if either x < p, or else x = p

and y ≤ q. That is, when the first coordinates are different, they determine the ordering

of pairs, e.g. (0, 8) ≪ (1, 3). But when the first coordinates are the same, we compare the

second coordinates, e.g. (1, 3) ≪ (1, 8). Prove that ≪ is antisymmetric.

[Solution]

Using the second definition of antisymmetric from lecture 34, we need to show: ∀(x, y), (p, q) ∈
Z

2, (x, y) ≪ (p, q) and (p, q) ≪ (x, y) implies (x, y) = (p, q).

(x, y) ≪ (p, q) means that either x < p or both x = p and y ≤ q. Similarly, (p, q) ≪ (x, y)
means that either p < x or both p = x and q ≤ y. If both (x, y) ≪ (p, q) and (p, q) ≪ (x, y),
x must equal p to be consistent between both definitions. Consequently, y ≤ q and q ≤ y,

so we conclude y = q and (x, y) = (p, q). This is what we needed to show.

(b) Let ∼ be the relation on Z such that x ∼ y if and only if 4 | 3x + 5y. Prove that ∼ is

transitive.

[Solution]

We need to show ∀x, y, z ∈ Z, x ∼ y and y ∼ z implies x ∼ z.

If x ∼ y and y ∼ z, then we have 4|3x+5y and 4|3y +5z. By the definition of divides, there

are some a, b ∈ Z such that 4a = 3x + 5y and 4b = 3y + 5z. Rearranging these equations,

we know 3x = 4a − 5y and similarly 5z = 4b − 3y.
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Now consider 3x + 5z. From our equations above, 3x + 5z = (4a − 5y) + (4b − 3y) =
4a + 4b − 8y = 4(a + b− 2y). Since (a + b− 2y) is an integer, we have 4|3x + 5z and x ∼ z,

by the definitions of divides and ∼. Thus we’ve shown that ∼ is transitive.

5. [10 points] A Probabilistic Algorithm

In the last homework, we saw an algorithm to verify polynomial identities based on the bino-

mial theorem. In this problem, we will consider a probabilistic algorithm to verify polynomial

identities of the form:

(a1x + a2)
n = b0x

n + b1x
n−1 + ... + bn−1x

1 + bn

where n is a positive integer and the ai and bi are non-negative integers. We will refer to the left-

hand side of the identity as G(x) and the right-hand side as F (x), so we have G(x) = (a1x+a2)
n

and F (x) = b0x
n + b1x

n−1 + ... + bn−1x
1 + bn

One way to verify the identity is to use an algorithm to test each coefficient generated by G(x)
and make sure it matches the corresponding coefficient in F (x). This is similar to the algorithm

on the last homework assignment and would require Θ(n2) operations.

Another option would be to randomly pick a value for x and verify that the two sides of the equa-

tion yield the same answer. This would be a kind of probabilistic algorithm, in that it would yield

the right answer when G(x) = F (x) but not always give us the right answer when G(x) 6= F (x).
In analyzing this algorithm we need to consider both how many operations it will perform and

the probability that it will give us an incorrect answer. Here is the pseudo-code for the algorithm:

procedure ProbablyVerify( x,a1, a2,n,b0..., bn)

binomial := (a1x) + a2

g := binomial

for i := 2 to n

begin
g := g · binomial

end

f := 0
xpower := 1
for j := 0 to n

begin

f := f + (bn−j · xpower)
xpower := xpower · x

end

if (g = f) then

matches := true

else

matches := false

return matches

(a) State a big-theta bound on the number of operations done by the procedure ProbablyVerify

in terms of the degree of the polynomial which is given by the input n .

[Solution]

The first for loop runs n−1 times, so there are Θ(n) operations. The second loop runs n+1
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times, which gives us another Θ(n) operations. The pseudocode outside of the loops (in-

cluding the if statement) give some additional constant number of operations. All together,

the number of operations will be Θ(n).

(b) The procedure will give an incorrect answer when we choose a specific value x = c such

that G(c) = F (c), but it is not true that for all real numbers x that G(x) = F (x). This

happens when we accidentally choose a value c such that G(c) − F (c) = 0. In other words,

we chose a value c that is a root of the polynomial equation G(x) − F (x) = 0. A degree n

polynomial has at most n distinct roots. Given that fact, if we choose an integer x uniformly

at random from the range 0 to m, for what value of m is the probability of selecting a root

definitely at or below 0.01? Explain your answer.

[Solution]

Let’s consider the worse case, which is that all n roots are non-negative integers. And that

the roots are fairly small, so that when we pick our bound m, the roots are all ≤ m.

In this case, the probability of choosing a root at random will be n
m+1

. Now let’s find the m

where the bound holds, where p is the probability of selecting a root:

0.01 =
1

100
≥

n

m + 1
≥ p

m + 1

100
≥ n

m ≥ 100n − 1

Thus when m is 100n − 1, the probability of choosing a root is at or below 0.01.
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