CS 173: Discrete Mathematical Structures, Spring 2009 Homework 10

Due at class on Friday, May 1, 2009 (50 points total)

1. [10 points] Paths and Circuits in Graphs

(a) Under what conditions does the graph $K_{m, n}$ have an Eulerian circuit? What has to be true about m and n ?
(b) Under what conditions does the graph Q_{n} have an Eulerian circuit? What has to be true about n ?
(c) Consider the complete graph K_{n}. Suppose we pick two vertices u and v. A path of length k between u and v is a sequence of k edges starting at u and ending at v. Consider a path in which no vertex or edge is visted more than once. How many different such paths of length 4 are there between u and v, assuming $n \geq 5$? Can you generalize this result and give a formula for the number of such paths of length k in K_{n} when $n>k$?

2. [10 points] Graph Diameters

On a connected simple graph G we can measure the distance between two distinct vertices v_{i} and v_{j} as the number of edges on the shortest path between them. The diameter of a graph G is the maximum distance between any two distinct vertices in G.
(a) What are the diameters of the following graphs: K_{n}, C_{n}, and W_{n} ?
(b) Prove by induction that the diameter of the n-dimensonal hypercube Q_{n} is n.

3. [10 points] Properties of Relations

(a) The relation E relates intervals of the real line that abut one another. Specifically $(x, y) E(p, q)$ if and only if $y=p$ or $x=q$. E.g. $(2,3)$ and $(1.5,2)$ are related because they share the common endpoint 2. Using a specific concrete counter-example, prove that this is not an equivalence relation.
(b) Suppose that Q is the relation on positive real numbers such that $x Q y$ if and only if $x y=1$. Is Q reflexive, irreflexive, both, or neither? Is Q transitive? Briefly justify your answers.
(c) Define the relation T on the set \mathbb{N}^{3} by saying that $(x, y, z) T(p, q, r)$ if and only if $x+y+z=$ $p+q+r$. List three elements of $[(1,2,3)]$ and also one element of \mathbb{N}^{3} that is not in $[(1,2,3)]$.
4. [10 points] Proving relation properties
(a) Let \ll be the relation on \mathbb{Z}^{2} such that $(x, y) \ll(p, q)$ if and only if either $x<p$, or else $x=p$ and $y \leq q$. That is, when the first coordinates are different, they determine the ordering of pairs, e.g. $(0,8) \ll(1,3)$. But when the first coordinates are the same, we compare the second coordinates, e.g. $(1,3) \ll(1,8)$. Prove that \ll is antisymmetric.
(b) Let \sim be the relation on \mathbb{Z} such that $x \sim y$ if and only if $4 \mid 3 x+5 y$. Prove that \sim is transitive.

5. [10 points] A Probabilistic Algorithm

In the last homework, we saw an algorithm to verify polynomial identities based on the binomial theorem. In this problem, we will consider a probabilistic algorithm to verify polynomial identities of the form:

$$
\left(a_{1} x+a_{2}\right)^{n}=b_{0} x^{n}+b_{1} x^{n-1}+\ldots+b_{n-1} x^{1}+b_{n}
$$

where n is a positive integer and the a_{i} and b_{i} are non-negative integers. We will refer to the lefthand side of the identity as $G(x)$ and the right-hand side as $F(x)$, so we have $G(x)=\left(a_{1} x+a_{2}\right)^{n}$ and $F(x)=b_{0} x^{n}+b_{1} x^{n-1}+\ldots+b_{n-1} x^{1}+b_{n}$
One way to verify the identity is to use an algorithm to test each coefficient generated by $G(x)$ and make sure it matches the corresponding coefficient in $F(x)$. This is similar to the algorithm on the last homework assignment and would require $\Theta\left(n^{2}\right)$ operations.
Another option would be to randomly pick a value for x and verify that the two sides of the equation yield the same answer. This would be a kind of probabilistic algorithm, in that it would yield the right answer when $G(x)=F(x)$ but not always give us the right answer when $G(x) \neq F(x)$. In analyzing this algorithm we need to consider both how many operations it will perform and the probability that it will give us an incorrect answer. Here is the pseudo-code for the algorithm:

```
procedure ProbablyVerify \(\left(x, a_{1}, a_{2}, n, b_{0} \ldots, b_{n}\right)\)
binomial \(:=\left(a_{1} x\right)+a_{2}\)
\(g:=\) binomial
for \(i:=2\) to \(n\)
begin
    \(g:=g \cdot\) binomial
end
\(f:=0\)
xpower \(:=1\)
for \(j:=0\) to \(n\)
begin
    \(f:=f+\left(b_{n-j} \cdot x p o w e r\right)\)
    xpower \(:=\) xpower \(\cdot x\)
end
if \((g=f)\) then
    matches \(:=\) true
else
    matches := false
return matches
```

(a) State a big-theta bound on the number of operations done by the procedure ProbablyVerify in terms of the degree of the polynomial which is given by the input n.
(b) The procedure will give an incorrect answer when we choose a specific value $x=c$ such that $G(c)=F(c)$, but it is not true that for all real numbers x that $G(x)=F(x)$. This happens when we accidentally choose a value c such that $G(c)-F(c)=0$. In other words, we chose a value c that is a root of the polynomial equation $G(x)-F(x)=0$. A degree n polynomial has at most n distinct roots. Given that fact, if we choose an integer x uniformly at random from the range 0 to m, for what value of m is the probability of selecting a root definitely at or below 0.01? Explain your answer.

