CS 173: Discrete Structures, Fall 2008 Quiz 2 (Wednesday 22 October)

NAME:	
NETID	
NETID:	

This quiz has 3 pages containing 5 questions. You have 20 minutes to finish. Showing your work may increase partial credit in case of mistakes.

- 1. (1 point) Give the day and time when your assigned discussion section meets. (If you've recently switched sections, give either one.)
- 2. (5 points) Mark each of the statements as "true" or "false".
 - (a) n^2 is $\Omega(n \log n)$
 - (b) 87 log *n* is $O(n^3)$
 - (c) n! is $O(100n^3 + 35)$
 - (d) $2^k + 2^{10}$ is $O(2^k)$
 - (e) The rational numbers have the same cardinality as the integers.

3. (4 points) Negate the following statement, moving the "not" onto individual (non-complex) propositions.

For every $p \in \mathbb{Z}$, there is a $q \in \mathbb{Z}$, if p > q, then $q^3 + p!$ is a multiple of 7.

- 4. (9 points) Each of the following definitions or claims has a significant flaw. Explain briefly what's wrong with each:
 - (a) If $f : \mathbb{N} \to \mathbb{N}$ is an increasing function, then f is one-to-one.

(b) If $f: A \to B$ and $g: B \to C$ are functions, then $f \circ g: A \to C$ is defined by $(f \circ g)(x) = f(g(x))$.

(c) Suppose that f and g are functions whose domain and range are the real numbers. Then f is O(g) if there is a constant real number m such that $|f(x)| \le m |g(x)|$ for every $x \ge k$.

5. (6 points) Use mathematical induction to prove that

$$\sum_{k=1}^{n} \frac{1}{2^k} = 1 - \frac{1}{2^n}$$

for any integer $n \geq 1$. Notice that the summation starts at 1. So the first term in the summation is $\frac{1}{2}$. You must do this problem by induction, not using some other proof technique.