
CS 173, Spring 2008
Midterm 2 Solutions

Problem 1: True/false (12 points)

Label each of the following statements as true or false.

(a) ∃x ∈ Z, ∀y ∈ Z, x < y

Solution: False. The statement claims that there is one particular integer x which is
smaller than all integers (including itself).

(b) n + log2 n is O(n)

Solution: True. As n gets large, log2 n becomes very small compared to n so we can
ignore that term.

(c) n! is O(2n)

Solution: False. First, we showed in lecture 16 that 2n < n! when n ≥ 4. Second, as
n gets large, the n! increases at a rate proportional to n whereas 2n increases only by a
factor of 2. This is perhaps the best way to remember which way this inequality goes.

(d) n log8 n is Θ(n log2 n)

Solution: True. To change the base of a log, you multiply by a fixed constant. By
“constant”, I mean a number which depends on the two bases (2 and 8) but not on the
input n. Constant multipliers don’t change big-O growth.

(e) The function g : Z → R defined by g(x) = x + 1 is onto.

Solution: False. How can it be onto, since there are a lot fewer integer inputs than there
are real number outputs? Or, said another way, the output of g is always an integer, so
non-integer values (e.g. 3.1415) can never be outputs of g.

Problem 2: Short answer (9 points)

(a) The number of ways to pick a k-element subset from a set containing n elements is written

C(n, k) or

(

n
k

)

. Give an equation for computing this quantity using factorials.

Solution:

n!

k!(n − k)!

BTW, this won’t be the last time someone expects you to remember this particular
formula. It’s a good one to get memorized.

1



(b) Let f : N → Z be defined by f(x) = 7x + 12. Prove that f is one-to-one.

Solution: Let x and y be two natural numbers and suppose that f(x) = f(y).

Since f(x) = f(y), 7x + 12 = 7y + 12 by the definition of f . So, by high school algebra,
7x = 7y and therefore x = y.

So, we’ve shown if f(x) = f(y) then x = y. This means that f is one-to-one.

Problem 3: Recursive definition (10 points)

(a) Here is a recursive definition of a set S, which contains pairs of numbers:

1) (2, 1) ∈ S and (1, 1) ∈ S

2) If (x, y) ∈ S, then (xy, 1) ∈ S

3) If (x, y) ∈ S and (p, q) ∈ S, then (x, p) ∈ S.

Give a non-recursive definition for the set S. Explain briefly and/or show your work.

Solution: Since (2, 1) ∈ S and (2, 1) ∈ S, (2, 2) ∈ S by (3).

Since (1, 1) ∈ S and (2, 1) ∈ S, (1, 2) ∈ S by (3).

Since (2, 2) ∈ S, then (4, 1) ∈ S by (2). So if we feed (4, 1) and (2, 1) to (3), we find that
(4, 2) ∈ S. If we repeat this process, we can keep multiplying the first coordinate by 2.
So S must contain every pair of the form (2n, 2) or (2n, 1), where n ≥ 0.

But, if (2n, 2) and (2m, 2) are in S, then (3) implies that (2n, 2m) is in S.

So S is the set of all pairs of the form (2n, 2m), where m, n ≥ 0.

(b) Find a closed-form solution for the following recurrence relation with the given initial
condition. A closed-form solution is a function T (n) that yields that same values as
the recurrence relation but is non-recursive. You should be able to find the solution
by unrolling the recurrence and then applying a formula you have seen before to find a
closed form for a summation. Show your work.

T (n) = T (n − 1) + 2n with initial condition T (0) = 0

Solution:

T (n) = T (n − 1) + 2n

= T (n − 2) + 2(n − 1) + 2n

= T (n − 3) + 2(n − 2) + 2(n − 1) + 2n

= T (n − 4) + 2(n − 3) + 2(n − 2) + 2(n − 1) + 2n

= T (0) + 2(1 + 2 + . . . + n)

= 2(1 + 2 + . . . + n)

= 2
n(n + 1)

2
= n(n + 1)

2



Problem 4: Algorithms (9 points)

Clarification given at exam: assume the input list a1,...,an is sorted in decreasing
order.

The following algorithm is a recursive form of binary search. It takes as input an arbitrary
list of n real numbers a1,...,an and determines if a given number x is in the list. If the number
is in the list, the function returns the position of x, if x is not in the list it returns the value
0. In the following code i and j are integers indicating the current search range (i.e. i = 6
and j = 10 means a6 through a10 are to be searched).

(a) Fill in the 2 blank lines below with pseudo-code that will correctly execute binary search
recursively.

procedure binary search(x,i,j,a1,...,an)
m := b(i + j)/2c
if (x = am) then

location := m
else if (x > am and i < m) then

SOLUTION: binary search(x, i, m − 1, a1,...,an)
else if (x < am and m < j) then

SOLUTION: binary search(x, m + 1, j, a1,...,an)
else location := 0

Commentary on solution: The first recursive call needs to inspect the half of the list
containing the larger numbers, because it happens in the case where the middle element of
the list am was smaller than the target value x. Since the condition checks that i < m, this
has to be the first half of the list. This is why the input list needs to have been in decreasing
order.

The pseudo-code in the book (p. 314) assumes increasing sorted order. Switching to de-
creasing was unintentional on our part and probably made this problem a bit more tricky
than we had planned.

(b) Suppose the function T (n) returns the number of operations needed by binary search to
find x (in the worst case) in a list of length n. Write a recurrence relation (recursive formula)
for T (n). Your recurrence should count the comparison and arithmetic operations done by
binary search, but it need not be exact: you can use letters such as c in your formula to
represent constant numbers.

Solution: T (n) = T (n

2
) + c. Each run of the binary search function does one recursive call,

on a problem half the size of the original. It also does some constant amount of work, e.g.
doing the tests for the if/then statements, computing the value m.

3



Problem 5: Induction (10 points)

Let’s define a sequence of numbers xn as follows:

Base: x1 = 1, x2 = 7

Induction: for every n ≥ 2, xn+1 = 7xn − 12xn−1

Use induction to prove that xi = 4n − 3n for every integer n ≥ 1. Hint: the algebra in the
inductive step should work out easily.

Clarification posted during exam: You need to prove xn = 4n−3n, not xi = 4n−3n.

Solution: Proof by induction on n.

Base: If n = 1 then 4n − 3n = 4 − 3 = 1 and x1 is defined to be 1.

If n = 2 then 4n − 3n = 16 − 9 = 7 and x2 is defined to be 7.

Induction: Suppose that xk = 4k − 3k for every k in the range [1, n], where n ≥ 2. We need
to show that xn+1 = 4n+1 − 3n+1.

xn+1 is defined to be 7xn − 12xn−1. By the inductive hypothesis xn = 4n − 3n and xn−1 =
4n−1 − 3n−1. Substituting in these values, we get that

xn+1 = 7xn − 12xn−1

= 7(4n − 3n) − 12(4n−1 − 3n−1)

= 7 · 4n − 7 · 3n − 12 · 4n−1 + 12 · 3n−1

= 7 · 4n − 7 · 3n − 3 · 4n + 4 · 3n

= 7 · 4n − 7 · 3n − 3 · 4n + 4 · 3n

= (7 − 3) · 4n − (7 − 4) · 3n

= 4 · 4n − 3 · 3n

= 4n+1 − 3n+1

So xn+1 = 4n+1 − 3n+1, which is what we needed to show.

Commentary on solution: The hard part is setting up the assumptions and goal of
the inductive step. If you’ve done that right, the algebra in the inductive step is fairly
straightforward. (Or, if it didn’t work out due to exam pressure, you’ll still get a lot of
partial credit.)

You need to use a “strong” hypothesis at the start of the inductive step, because the inductive
step needs to refer back to results for two previous values: n and n− 1. This is also why we
needed two base cases.

4


