Relations Tutorial Problems

1. Constructing a concrete relation

Construct a relation R on the set $\{1,2,3\}$ such that all the following are true:

- $1 R 2$
- R is symmetric
- R is transitive
- R is not an equivalence relation
(You are constructing just one relation which satisfies all four conditions, not a separate relation for each condition. You can specify the relation however you want: a diagram with arrows, a table of related pairs, etc.)

2. Discussion manual problems

Do the following problems from the discussion manual. (Note that when these problems say something like "Define a relation R on A such that ..."; they mean "We are hereby defining a relation R on A such that ...". In particular, it is not asking you to provide a definition.)

- 4.2 parts (a) and (b)
- 4.3 part (a), except you do not need to prove the relation is an equivalence relation.
- 4.3 part (b)

3. Abstract relation proof

Let R and S be symmetric relations on some set A. Define a relation \sim on A such that $x \sim y$ if and only if $x R y$ and $\neg(x S y)$. Prove that \sim is symmetric.

4. Sorting

(This question is purposefully more open-ended than usual. Don't worry about getting the same answer as us, and move on when you don't have more to profitably discuss.) In programming, sorting a list of numbers in ascending order is sometimes called "sorting by <". A good sorting API will allow you to sort by user-defined relations - e.g. if you want all the odds ascending followed by all the evens ascending, this would be sorting by R where R is defined by " $a R b$ iff either a is odd and b is even, or they have the same parity ${ }^{1}$ and $a<b$ ". But there are also relations which are not usable for sorting. In general, what properties should a relation R have (or not have) in order for "sorting by R " to make sense (for example, does R need to be reflexive, symmetric, etc?)?

[^0]
[^0]: ${ }^{1}$ i.e. they're both odd or both even

