Induction-Like Implications ${ }^{1}$

Do not use induction for this problem, but think about how this problem relates to the mechanics of induction.

For each statement S below, answer the following two prompts:

- Find a predicate $P(n)$ on natural numbers where $(\forall k, P(k) \rightarrow P(k+2))$ is true and also S is true, or explain why no such predicate exists.
- Find a predicate $P(n)$ on natural numbers where $(\forall k, P(k) \rightarrow P(k+2))$ is true but S is false, or explain why no such predicate exists.

For example, if S is the statement " $\forall n, P(n)$ ", then:

- For the first prompt, we could define $P(n)$ to be " $n=n$ " (or anything else that is true for every natural number ${ }^{2}$). This clearly makes S true, and it also makes the required induction-like implication true since for every $k, P(k) \rightarrow P(k+2) \equiv T \rightarrow T \equiv T)$.
- For the second prompt, we could define $P(n)$ to be " n is even". This makes S false (as not all natural numbers are even), but our inductionlike implication is still true: on even k it's $T \rightarrow T \equiv T$, and on odd k it's $F \rightarrow F \equiv T$.
c) $S=" \forall n \geq 0, \neg P(n)$ "
d) $S="(\forall n \leq 100, P(n)) \wedge(\forall n>100, \neg P(n)) "$
e) $S="(\forall n \leq 100, \neg P(n)) \wedge(\forall n>100, P(n)) "$
f) $S=" P(0) \rightarrow \forall n, P(n+2) "$
h) $S=" P(1) \rightarrow \forall n, P(2 n+1) "$

[^0]
[^0]: ${ }^{1}$ This problem was adapted from "Mathematics for Computer Science" by Lehman et al. problem 5.16. https://courses.grainger.illinois.edu/cs173/fa2020/Textbook/ MITMathCS.pdf
 ${ }^{2}$ Or more simply, you can just say $P(n)$ is defined to be "true", i.e. it ignores its argument and outputs true no matter what.

