The Diagonal Robot

A robot is walking around on the 2 D integer grid. It starts at $(1,1)$, and at each step it moves to one of the closest diagonal grid points - e.g. its first step can take it to any of $(2,2),(2,0),(0,0)$, or $(0,2)$. Prove that the robot can never reach the point $(0,1)$.

Hint:

1. First, draw a picture to make sure the problem statement makes sense, and experiment with what the robot can reach in a few steps. For example, find a sequence of steps that allows the robot to reach $(-3,3)$.
2. Based on patterns you see in step 1, guess some property which is true of all points the robot can reach - as a (wrong) example, you might guess that every (x, y) point the robot can reach will satisfy $x \leq y$.
3. Prove by induction that your guess from the previous step is correct. Your induction variable should be the number of steps the robot takes.
4. Conclude by showing that $(0,1)$ does not have your proven property, so it must not be reachable.
