15.5 Recursive versus Iterative Algorithms

a) Foo(n) computes the \(n\)th Fibonacci number.

b) \(O(n)\). We have a for-loop which does a constant amount of work \(O(n)\) times; everything else in the program just adds an additional constant amount of work.

c) RecursiveFoo(n: non-negative integer)

 if n=0 or n=1
 return n
 else
 return RecursiveFoo(n-1) + RecursiveFoo(n-2)

 This algorithm just follows the (recursive) definition of Fibonacci exactly - to compute the \(n\)th Fibonacci number, it just computes and then adds together the \((n - 1)\)th and \((n - 2)\)th.

d) We’ve established Foo runs in linear time; meanwhile RecursiveFoo is exponential time with respect to \(n\). We can write a recurrence for RecursiveFoo’s runtime: \(T(0) = T(1) = c\), \(T(n) = T(n - 1) + T(n - 2) + d\). Computing the closed form for that recurrence is outside the scope of this class, but it’s definitely exponential - one way to see that is to first bound it below by a similar recurrence where \(T(n) = 2T(n - 2) + d\) instead.

15.3 Mystery Code II

a) crunch computes how many nonnegative numbers are in the array.

b) \(T(1) = d\)
 \(T(n) = 2T\left(\frac{n}{2}\right) + c\)

c) Answer: \(\Theta(n)\).

 Justification using unrolling:

 \[
 \begin{align*}
 T(n) & = 2T\left(\frac{n}{2}\right) + c \\
 T(n) & = 2[2T\left(\frac{n}{4}\right) + c] + c = 2^2T\left(\frac{n}{4}\right) + 2c + c \\
 T(n) & = 2^2[2T\left(\frac{n}{8}\right) + c] + 2c + c = 2^3T\left(\frac{n}{8}\right) + 2^2c + 2c + c
 \end{align*}
 \]

Based on the above, we predict the general form is that for any \(k\),

\[
T(n) = 2^kT\left(\frac{n}{2^k}\right) + \sum_{i=0}^{k-1} 2^ic = 2^kT\left(\frac{n}{2^k}\right) + c(2^k - 1)
\]
When we choose \(k \) such that \(2^k = n \), this becomes \(nT(1) + c(n - 1) = dn + cn - c \), which is \(\Theta(n) \).

Alternate somewhat handwavy justification using recursion trees:
The 'extra work' term is constant, so we just have to count the number of nodes in the tree. And for a full complete \(k \)-ary tree, the number of nodes is proportional to the number of leaves; we can ignore the proportionality constant so we only need to count the number of leaves. The height of the tree is \(\log(n) \) and the branching factor is 2, so there are \(n \) leaves.

15.4 Mystery Code III

a) \(\text{FindPeak(-1,3,6,7,0):} \)
 - skip several false ifs
 - set \(k=3 \)
 - skip line 8’s if
 - line 10: since 6<7, we return \(\text{FindPeak(7,0)+3} \)

\(\text{FindPeak(7,0):} \)
 - line 3: since 7>0, we return 1

Thus the original call returns 1+3=4

And the peak is indeed at position 4 (starting from that 7, the array strictly decreases in both directions until its ends)

b) 3. If \(n \) were 1, we would have returned on line 1. If \(n \) were 2, we would return on either line 4 or line 6 (because the first item is either greater than or less than the second/last). However on an input array with 3 elements whose peak is in the center, like \([5, 6, 4]\), we can reach line 7. (Note that to argue that 3 is the smallest, we had to argue both that 3 works and that no smaller number works.)

c) \(T(1) = T(2) = c \)
 \(T(n) = T(n/2) + d \)

d) \(\Theta(\log(n)) \). We find this by unrolling: \(T(n) = T(n/2) + d = T(n/2^2) + 2d = T(n/2^3) + 3d = \cdots = T(n/2^k) + kd = T(n/2^{\log(n)}) + \log(n)d = c + \log(n)d \)

15.4 Supplement

1) The Peak Checking problem is in NP because it is easy to justify a “yes” instance: we just need to confirm that all neighbors around the given index are smaller than the value at that index. It’s also in co-NP because it is easy to justify a “no” instance: we just need to confirm that at least one neighbor is greater.
2) Yes, such an algorithm would have to exist. First, we observe that we have a polynomial-time algorithm for Peak Checking: the ‘justification’ procedures described above are constant-time and can be used to directly solve the problem. Next we note that the Hamiltonian Cycle problem is in NP because a “yes” instance can be easily justified: just point out the Cycle in the graph, after which it is trivial to confirm that it is indeed Hamiltonian. (Note that our ‘justification’ idea here relies on ‘already knowing’ the solution - this is fine, but it means that unlike with the Peak Checking example, there is no clear way to turn this into an algorithm for actually solving the problem directly rather than simply checking someone else’s solution.) Finally, by the definition of NP-completeness, since we have a poly-time algorithm for one NP-complete problem (Peak Checking, by our supposition), there must exist some poly-time algorithm for every other NP problem, including the Hamiltonian Cycle problem.

3) **Unlikely.** Notice that by slightly extending the logic of the previous question, we see that Peak Checking is NP-complete if and only if P=NP. Current consensus is that probably P ≠ NP (though this is not proven! it’s an open problem with a million dollar prize, since it has significant implications for e.g. cryptography), so it follows that Peak Checking is probably not NP-complete.

15.2 Mystery Code I

a) maxthree computes the largest sum of 3 numbers in the list. (Equivalently, it computes the sum of the largest 3 numbers.) *(Note: this is a spectacularly inefficient way to compute this result. You could easily do it in linear time, but as we’ll see below this method is at least factorial-time.)*

b) \(T(3) = e \)
\[
T(n) = nT(n - 1) + dn
\]
The for loop runs \(n \) times, and each time it does \(T(n - 1) + d \) work: one recursive call, and then various constant-time operations (incrementing loop variable, removing \(n \)th element, etc). *(There is also some constant-time work done outside the loop, but don’t write e.g. \(dn + f \) as your extra work term - non-dominant terms don’t make a difference to the big-\(O \) analysis so it’ll just make things more complicated without changing the final result.)*

c) \(\frac{n!}{3!} \). (The last level of the recursion tree is when the input size equals 3, so the number of leaves is \(n \cdot (n - 1) \cdot (n - 2) \cdots 5 \cdot 4 = \frac{n!}{3!} \))

d) There are \(\Theta(n!) \) leaves. Since \(2^n \ll n! \), the algorithm takes more than \(O(2^n) \) time.