Countability Tutorial Solutions

19.1 Which Kind of Infinity?

A common fast way to show that a set is countable is to note that every element in the set has a finite representation. Also you may use the fact that there are no infinite sets with smaller cardinality than \(\mathbb{N} \), so if you can show some set \(X \) is infinite and \(|X| \leq |\mathbb{N}| \), then \(|X| = |\mathbb{N}| \).

a) **Countably infinite.** In fact it’s basically the definition of countably infinite - the bijection mapping it to \(\mathbb{N} \) is \(\text{id}_{\mathbb{N}} \).

b) **Uncountable.** The powerset of a set always has a (strictly) larger cardinality than that set. (Or a handwavy ‘solution’ thinking about representations: these do not appear to all have finite representations - if I have an infinite set of naturals with no pattern, how would I possibly write down that set?)

c) **Uncountable.** We know \(\mathbb{R} \) is uncountable, and \(\mathbb{R} \subseteq \mathbb{C} \).

d) **Countably infinite.** We can provide a one-to-one function \(f \) mapping these to the (finite) bit strings: given \(S \) with maximum element \(n \), return the bit string of length \(n + 1 \) with a 1 in (0-indexed) position \(i \) iff \(i \in S \). For example, \(f(\{0, 3, 4\}) = 10011 \). And we know the set bit strings (or any other strings with a finite alphabet) are countable. (Thinking with representations: each \(S \in X \) has a roster notation which is finite - e.g. \(\{0, 3, 4\} \).)

e) **Countably infinite.** Each book is just one finite string using a finite alphabet. (You may be tempted to think of a book as a list of strings separated by spaces, but that’s making it more complicated than necessary - there’s no need to treat characters like space and newline any differently from a and b.)

f) **Countably infinite.** We know \(\mathbb{Q} \) is countable, and this set is a subset of \(\mathbb{Q} \). (Thinking with representations: these are reals specifically chosen to have expansions that end - i.e. representations that are finite.)

19.2 A Curious Bijection

a)
b) Consider the values of x, y satisfying $x + y = k$.

Because we are in \mathbb{N}, for any such values of x and y we have that $y \geq 0$ and therefore $x \leq k$. For any value $x \leq k$, we can let $y = k - x$ to achieve $x + y = k$.

Thus, x ranges from 0 to k, and $f(x, y) = s(x + y) + x = s(k) + x$ ranges from $s(k)$ to $s(k) + k$. Remembering from lecture that $s(k) = \frac{k(k+1)}{2}$, we can also write this as:

$$\frac{k(k+1)}{2} \leq f(x, y) \leq \frac{k(k+1)}{2} + k$$

c) The preimage of 17 is $\{(2, 3)\}$. Note that $f(2, 3) = s(5) + 2 = 15 + 2 = 17$.

We can show that $(2, 3)$ is the only element in the pre-image by noting from our solution to part d) that, for all x, y, if $f(x, y) = f(2, 3)$, then $x + y = 2 + 3 = 5$. Testing all such values of x and y shows that $(2, 3)$ is the only element in the pre-image of 17.

(Alternatively, we could argue that there can’t be any other element in the pre-image because, as demonstrated through parts (d) and (e), f is one-to-one.)

d) Let $k = x + y$, $l = p + q$. From the given supposition we know $k \neq l$, so without loss of generality, assume that $k < l$.

We get the following:

$$f(x, y) \leq \frac{k(k+1)}{2} + k$$

[from part (b)]

$$= \frac{k^2 + 3k}{2}$$

$$< \frac{k^2 + 3k + 2}{2}$$

$$= \frac{(k+1)(k+2)}{2}$$

$$\leq \frac{l(l+1)}{2}$$

[k < l, and $k, l \in \mathbb{Z}$, so $k + 1 \leq l$]

$$\leq f(p, q)$$

[from part (b)]
This establishes $f(x, y) < f(p, q)$, so $f(x, y) \neq f(p, q)$; QED.

e) Suppose not. That is, suppose towards a proof by contradiction that $f(x, y) = f(p, q)$. Further, let $k = x + y = p + q$. Then:

\[
\begin{align*}
 f(x, y) &= f(p, q) \\
 s(x + y) + x &= s(p + q) + p \\
 s(k) + x &= s(k) + p \\
 x &= p
\end{align*}
\]

Since $x = p$ and $x + y = p + q$, we have that $y = q$. But we assumed that $(x, y) \neq (p, q)$, contradiction. So our initial supposition must be false, and thus instead we know $f(x, y) = f(p, q)$; QED.

Additional problem

Lemma: For (non-empty) sets A and B, there exists a one-to-one function $f : A \to B$ if and only if there exists an onto function $g : B \to A$.

Proof: See solution to the “additional tutorial problem” from the Functions week - the only difference is that now we are working with arbitrary sets instead of subsets of \mathbb{N}, so where that solution uses the function minimum (which can choose a representative from a set of naturals), we instead have to use the choice function h from the hint. □

We know that by definition, there exists a one-to-one function $f : A \to B$ if and only if $|A| \leq |B|$. So now by the lemma, we’ve established that there exists an onto function $g : B \to A$ if and only if $|A| \leq |B|$.
