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TAKE-AWAYS

• a | b means there exists an integer k such that b = ak. We
say that a is a factor or divisor of b, and b is a multiple of a.

• For integers a and b with a > 0, there exist unique integers
q, r such that b = qa + r and 0 ≤ r < a. q = quot(b, a) is
called the quotient and r = rem(b, a) is called the remainder.

• A number greater than 1 is prime if its only factors are 1
and itself. Every integer can be written as a product of a
unique weakly decreasing sequence of primes.

• gcd(a, b) is the largest integer dividing both a and b. a and
b are coprime if gcd(a, b) = 1.

• a ≡ b mod n means n | (a − b). This equivalence relation
splits the integers into congruence classes [a]n = {b | a ≡
b mod n}. Any element b ∈ [a]n is called a representative of
the congruence class; the canonical representative of [a]n is
rem(a, n).

• Congruence classes can be added and multiplied.

The idea of divisibility underlies among other things, many tech-
niques in modern cryptography and hashing. The use of prime num-
bers is so prevalent in cryptography that trying to efficiently factor
numbers into their prime factors continues to be a major area of re-
search in cryptography and computer security. Many common hash-
ing schemes used for things like hash tables involve taking an input x
and outputting the “congruence class” of some function of x.

Divisibility

Recall that b being even means that there exists some integer k such
that b = 2k. We can also write this as 2 | b, to be read as “2 is a factor
of b” or “b is a multiple by 2.” We can make this more general:

Definition 1 (Divisibility). Given integers a and b, a | b means there
exists integer k such that b = ak. In this case we say that a is a factor
or divisor of b, and b is a multiple of a.

Some examples:
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• 3 | 6

• −7 | 49

• 83 | −11537

• ∀a ∈ Z, a | a

• ∀a ∈ Z, a | 0

• ∀a ∈ Z \ {0}, 0 - a (0 is not a
factor of a)

You should probably think about the last two examples and figur-
ing out why they are true.

A number of easy but useful facts can be proven about divisibility.

Lemma 2. For any integers a, b, c, x, y:

a) If a | b and b | c then a | c

b) If a | b and a | c then a | bx + cy

c) If c 6= 0, then a | b if and only if ca | cb

Proof.

a) By definition, there exist integers k, ` such that b = ak and c = b`.
Then c = a(k`), so a | c.

b) By definition, there exist integers k, ` such that b = ak and c = a`.
Then bx + cy = akx + a`y = a(kx + `y), so a | bx + cy.

c) First suppose that a | b, then b = ak for some integer k, so cb =

(ca)k, so ca | cb. Now suppose ca | cb, then there exists some
integer k so that cb = cak. Since c 6= 0 we can cancel c from both
sides to find b = ak, i.e., a | b.

It is also useful to know what happens a - b. You probably remem-
ber exercises where you try to divide some integer b by some other
integer a and get some remainder left over. This is formalized in the
following theorem:

Theorem 3 (Division Theorem). Let a, b be integers such that a > 0.
Then there exist unique integers q, r such that b = aq + r and 0 ≤ r < a.

Proof. We first prove existence by induction for b ≥ 0. For b ≥ 0, let
P(b) be the statement “There exist integers q, r such that b = aq + r
and 0 ≤ r < a.”

The base cases are P(b) for 0 ≤ b ≤ a− 1. Well, b = 0a + b, so we
can set q = 0 and r = b.

For the inductive case k ≥ a, assume as our inductive hypothesis
that P holds for all i from 0 and k − 1. Set ` = k − a. Then since
0 ≤ k − a ≤ k − 1, the inductive hypothesis implies ` = qa + r for
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some integers q, r where 0 ≤ r < a. Then

k = a + (k− a)

= a + `

= a + (qa + r)

= (q + 1)a + r.

Induction complete.
For b < 0, then −b > 0, so there exist q, r so that −b = qa + r and

0 ≤ r < a. If r = 0, then b = (−q)a. Otherwise, b = −qa − r =

−(q + 1)a + (a− r), and since 0 < r < a, 0 < a− r < a as well.
We now need to show that q, r are unique. Suppose that b = qa +

r = q′a + r′, where 0 ≤ r < a, 0 ≤ r′ < a, and r′ ≥ r. We need to
show that q = q′ and r = r′.1 Observe that r′ − r = a(q − q′). But 1 Recall that “there exists exactly one

x, P(x)” means that there exists at
least one x, P(x), and for all x, y,
P(x) = P(y) implies x = y.

0 ≤ r′ − r ≤ r′ < a, so 0 ≤ q− q′ < 1. Since q− q′ is an integer, it
must be the case that q− q′ = 0. But then also r′ − r = 0, so q′ = q
and r′ = r.

Definition 4. Given integers a, b with a > 0, the quotient quot(b, a)
and remainder rem(b, a) are the unique integers such that b = a ·
quot(b, a) + rem(b, a) and 0 ≤ rem(b, a) < a.

(Co)primality

Recall that an integer p > 1 is prime if the only factors of p are 1 and
p, and composite otherwise. There are many applications in which we
are interested in comparing the common factors of two composite in-
tegers a, b.2 The greatest common divisor gcd(a, b) is the largest integer 2 Many cryptographic methods, such

as the RSA algorithm, are based on the
idea that the prime factors are hard to
compute.

that is a factor of both a and b. It is easy to see that for primes p, q
such that p 6= q, gcd(p, q) = 1. More generally, two numbers a, b are
said to be coprime or relatively prime if gcd(a, b) = 1.

The following lemma turns out to have far-reaching applications in
number theory and in computer algebra in general:

Lemma 5 (Bézout’s Lemma). Let a, b be non-zero integers. Then there
exist integers x, y such that ax + by = gcd(a, b).

You will be asked to prove Bézout’s lemma in your homework.
One nice consequence of Bézout’s lemma is the following:

Lemma 6 (Euclid’s Lemma). Suppose a, b1, b2, . . . , bk are integers such
that a is prime and a | b1b2 . . . bk. There there exists some i, 1 ≤ i ≤ k, such
that a | bi.

Proof. We will use Bézout’s lemma to show the special case of k = 2.
The general result follows via induction.3 3 If you can’t see how this works right

away, you should work out the full
induction details for yourself.
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If a | b1, then we are done. So suppose that a - b1. Since a is prime,
gcd(a, b1) = 1. By Bézout’s lemma, there exist integers x, y so that
ax + b1y = gcd(a, b1) = 1. Then multiplying both sides by b2, we
get b2(ax + b1y) = ab2x + b1b2y = b2. Since a | b1b2 by assumption,
a | ab2x + b1b2y by Lemma 2. So a | b2.

We previously saw (in the unit on Induction) that every integer
n ≥ 2 is a product of one or more primes. This is known as a prime
factorization of n. It turns out that the prime factorization of every
integer n ≥ 2 is unique up to reordering the factors. In other words,
if we rearrange the prime factors in weakly decreasing order4 then n is 4 A sequence of numbers is weakly

decreasing if each number in the
sequence is greater than or equal to the
numbers after it.

a product of a unique weakly decreasing sequence of primes, or pusp, for
short.5

5 You probably recall a bogus proof of
this fact from the Induction Homework.Theorem 7 (Fundamental Theorem of Arithmetic). Every integer

greater than one is a pusp.

Proof. By induction.
The base case is n = 2: 2 is prime, and by definition there is only

one sequence of primes whose product is 2, namely, 2.
For the inductive case, assume as our inductive hypothesis that

every number i between 2 and n − 1 is a pusp. We will now show
that n is a pusp.

We already know that n can be written as a product of primes,
n = p1 p2 . . . pk. Since multiplication is commutative, we can assume
(by reordering if necessary) that p1 ≥ p2 ≥ · · · ≥ pk. Now suppose
that n can be written as a product of primes in a different way, n =

q1q2 . . . q`.
Set m = p2 p3 . . . pk, so that p1m = n = q1q2 . . . q`. Since m ∈ Z

we know that p1 | q1q2 . . . q`. By Euclid’s Lemma, p1 | qi where
1 ≤ i ≤ `. But since p1 6= 1 and qi is prime, we conclude that p1 = qi.
By reordering the factors q1, q2, . . . , q`, we can assume that i = 1 (so
p1 = q1) and that q2 ≥ q3 ≥ · · · ≥ q`.

We now have p2 . . . pk = m = q2 . . . q`. But since 2 ≤ m ≤ n− 1, by
the inductive hypothesis, m is a pusp, so the sequences p2, . . . , pk and
q2, . . . , q` are the same.

We conclude that any two ways of writing n as a product of a
weakly decreasing sequence of primes are actually the same, i.e., n is
a pusp. Induction complete.

Congruence modulo n and modular arithmetic

Recall that there are an infinite number of integers, but computers
have finite memory. More generally, we might be working with a
very large set of possible numbers, but we would much prefer to do
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our computations over a much smaller set.6 One way to do this is via 6 For example, storing data in a hash
table.modular arithmetic, which preserves some useful properties of normal

arithmetic over the integers.

Definition 8. For integers a, b, n with n > 0, a ≡ b mod n (a and b are
congruent modulo n) if and only if n | (a− b).

Note that n | (a− b) if and only if n | (b− a), so the definition is
symmetric in a and b.

Let us practice using this definition by proving the following use-
ful lemma:

Lemma 9. Let a, b, c, d, n be integers with n > 0 such that a ≡ c mod n
and b ≡ d mod n. Then:

a) a + b ≡ c + d mod n, and

b) ab ≡ cd mod n.

Proof. Let a, b, c, d, n be integers with n > 0 such that a ≡ c mod n
and b ≡ d mod n. Then n | (a− c) and n | (b− d).

For the first part, Lemma 2 tells us that n | ((a− c) + (b− d)) =

((a + b)− (c + d)). So a + b ≡ c + d mod n.
The second part is slightly more difficult. From n | (a − c), we

know that there exists some integer k such that nk = a − c, and
from n | (b − d), we know there exists some integer ` such that
n` = b − d. Rearranging, we get a = c + nk and b = d + n`, so
ab = (c+ nk)(d+ n`) = cd+ n(c`+ dk+ nk`). Since c`+ dk+ nk` ∈ Z,
we conclude n | (ab− cd), i.e., ab ≡ cd mod n.

Definition 10. Given integers a and n, the congruence class of a mod-
ulo n is the set [a]n = {b | a ≡ b mod n}.7 Any element b ∈ [a]n is 7 Congruence modulo n is an equivalence

relation over the integers, and you can
verify for yourself that the relation is
reflexive, symmetric, and transitive.
Equivalence relations over a set A split
the set into disjoint equivalence classes.
Congruence classes are a special case of
this more general phenomenon.

called a representative of [a]n.

Lemma 9 tells us that if c ∈ [a]n and d ∈ [b]n, then c + d ≡
a + b mod n, i.e., [c + d]n = [a + b]n, and similarly, cd ≡ ab mod n,
i.e., [cd]n = [ab]n. In other words, no matter which representatives we
choose when adding or multiplying, we end up in the same equiva-
lence class at the end. This justifies the following definition:

Definition 11 (Modular Arithmetic).

a) [a]n + [b]n = [a + b]n

b) [a]n[b]n = [ab]n

The definition of congruence class implies that if b ∈ [a]n, then
[a]n = [b]n. One common way to think about modular arithmetic is
by thinking of a number a as being “the same” as its remainder when
divided by n:
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Lemma 12. a ≡ rem(a, n) mod n, i.e., [a]n = [rem(a, n)]n.

rem(a, n) is often referred to as the canonical representative of [a]n.
In particular, doing computations using rem(a, n) can greatly simplify
computations. For example, consider a = 79, b = 102, and n = 4.
Then rem(a, n) = 3 and rem(b, n) = 2. Instead of computing [79 +

102]4 = [181]4 = [1]4, we can compute [79]4 + [102]4 = [3]4 + [2]4 =

[3 + 2]4 = [5]4 = [1]4. Similarly, instead of computing [79]4[102]4 =

[79 · 102]4 = [8058]4 = [2]4, we can compute [79]4[102]4 = [3]4[2]4 =

[6]4 = [2]4.
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