Number Theory
Benjamin Cosman, Patrick Lin and Mahesh Viswanathan

Fall 2020

TAKE-AWAYS

* 1 | b means there exists an integer k such that b = ak. We
say that a is a factor or divisor of b, and b is a multiple of a.

e For integers a and b with a > 0, there exist unique integers
g,rsuchthatb = ga+rand0 < r < a.q = quot(b,a) is
called the quotient and r = rem(b, a) is called the remainder.

* A number greater than 1 is prime if its only factors are 1
and itself. Every integer can be written as a product of a
unique weakly decreasing sequence of primes.

e gcd(a,b) is the largest integer dividing both 4 and b. a and
b are coprime if ged(a,b) = 1.

e g = bmod nmeansn | (a— b). This equivalence relation
splits the integers into congruence classes [al, = {b | a =
bmod n}. Any element b € [a], is called a representative of
the congruence class; the canonical representative of [a],, is
rem(a, n).

e Congruence classes can be added and multiplied.

The idea of divisibility underlies among other things, many tech-
niques in modern cryptography and hashing. The use of prime num-
bers is so prevalent in cryptography that trying to efficiently factor
numbers into their prime factors continues to be a major area of re-
search in cryptography and computer security. Many common hash-
ing schemes used for things like hash tables involve taking an input x
and outputting the “congruence class” of some function of x.

Divisibility

Recall that b being even means that there exists some integer k such
that b = 2k. We can also write this as 2 | b, to be read as “2 is a factor
of b” or “b is a multiple by 2.” We can make this more general:

Definition 1 (Divisibility). Given integers a and b, a | b means there
exists integer k such that b = ak. In this case we say that a is a factor
or divisor of b, and b is a multiple of a.

Some examples:
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* 3|6 e YacZ,ala
. 7|19 e YacZ,al|0

e Vaec Z\{0},01a(0isnota
e 83| —11537 factor of a)

You should probably think about the last two examples and figur-
ing out why they are true.
A number of easy but useful facts can be proven about divisibility.

Lemma 2. For any integers a, b, c, x, y:

a) Ifa|bandb|cthena|c

b) Ifa|banda | cthena | bx+cy

c) Ifc#0, then a | bif and only if ca | cb
Proof.

a) By definition, there exist integers k, £ such that b = ak and ¢ = b{.
Then ¢ = a(kf), so a | c.

b) By definition, there exist integers k, ¢ such that b = ak and ¢ = al.
Then bx + cy = akx + aly = a(kx + {y), so a | bx + cy.

c) First suppose thata | b, then b = ak for some integer k, so cb =
(ca)k, so ca | cb. Now suppose ca | cb, then there exists some
integer k so that cb = cak. Since ¢ # 0 we can cancel ¢ from both
sides to find b = ak, i.e., a | b. 0

It is also useful to know what happens a t b. You probably remem-
ber exercises where you try to divide some integer b by some other
integer a and get some remainder left over. This is formalized in the
following theorem:

Theorem 3 (Division Theorem). Let a, b be integers such that a > 0.
Then there exist unique integers q,v such that b = aq+rand 0 <r < a.

Proof. We first prove existence by induction for b > 0. For b > 0, let
P(b) be the statement “There exist integers g, such that b = aq +r
and 0 <r<a”

The base cases are P(b) for0 < b < a—1. Well, b = 0a + b, so we
cansetg=0and r = b.

For the inductive case k > a, assume as our inductive hypothesis
that P holds for all 7 from 0 and k — 1. Set { = k — a. Then since
0 < k—a < k—1, the inductive hypothesis implies ¢{ = ga + r for

2
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some integers g, where 0 <7 < 4. Then

k=a+ (k—a)
=a+/{
—a+(qa+7)
=(g+1)a+r.

Induction complete.

For b < 0, then —b > 0, so there exist g, r so that —b = ga + r and
0<r<alfr =0,thenb = (—g)a. Otherwise, b = —qa —r =
—(g+1)a+(a—r),andsince 0 <r <a,0<a—r <aas well.

We now need to show that g, are unique. Suppose that b = ga +
r=gqga+r,where0 <r <a,0<7 <aandr > r. Weneed to

show that q = q/ and r = r'.T Observe that ' —r = a(q — q/). But Recall that “there exists exactly one

0<¢ —r <4 1500 < ag—d 1. Since g — ¢’ is an integer, it x, P(x)” means that there exists at
- - <4 7 -1 < q , q g/ ! least one x, P(x), and for all x,y,

must be the case that g — ¢’ = 0. But thenalsor' —r = 0,509 = ¢ P(x) = P(y) implies x = y.

and ' =r. O

Definition 4. Given integers a,b with a > 0, the quotient quot(b, a)
and remainder rem(b, a) are the unique integers such thatb = a -
quot(b,a) + rem(b,a) and 0 < rem(b,a) < a.

(Co)primality

Recall that an integer p > 1 is prime if the only factors of p are 1 and
p, and composite otherwise. There are many applications in which we
are interested in comparing the common factors of two composite in-

tegers a,b.? The greatest common divisor gcd(a, b) is the largest integer >Many cryptographic methods, such
as the RSA algorithm, are based on the

idea that the prime factors are hard to
such that p # ¢, gcd(p,q) = 1. More generally, two numbers a, b are compute.

said to be coprime or relatively prime if ged(a,b) = 1.
The following lemma turns out to have far-reaching applications in

that is a factor of both 4 and b. It is easy to see that for primes p, g

number theory and in computer algebra in general:

Lemma 5 (Bézout's Lemma). Let a,b be non-zero integers. Then there
exist integers x,y such that ax + by = ged(a, b).

You will be asked to prove Bézout’s lemma in your homework.
One nice consequence of Bézout’s lemma is the following;:

Lemma 6 (Euclid’s Lemma). Suppose a, by, by, ..., by are integers such
that a is prime and a | byb, ... by. There there exists some i, 1 < i < k, such
that a | b;.

Proof. We will use Bézout’s lemma to show the special case of k = 2.

The general result follows via induction.3 3If you can’t see how this works right
away, you should work out the full
induction details for yourself.
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If a | by, then we are done. So suppose that a { b;. Since a is prime,
gcd(a,b1) = 1. By Bézout’s lemma, there exist integers x, y so that
ax + by = ged(a,by) = 1. Then multiplying both sides by by, we
get by(ax + byy) = abyx + bybyy = by. Since a | byb, by assumption,
a | abyx + bibyy by Lemma 2. So a | by. O

We previously saw (in the unit on Induction) that every integer
n > 2is a product of one or more primes. This is known as a prime
factorization of n. It turns out that the prime factorization of every
integer n > 2 is unique up to reordering the factors. In other words,

if we rearrange the prime factors in weakly decreasing order* then n is 4 A sequence of numbers is weakly
decreasing if each number in the

a product of a unigue weakly decreasing sequence of primes, or pusp, for
P f q Y 854 f P » OF pusp, sequence is greater than or equal to the

short.5 numbers after it.
5 You probably recall a bogus proof of
Theorem 7 (Fundamental Theorem of Arithmetic). Every integer this fact from the Induction Homework.

greater than one is a pusp.

Proof. By induction.

The base case is n = 2: 2 is prime, and by definition there is only
one sequence of primes whose product is 2, namely, 2.

For the inductive case, assume as our inductive hypothesis that
every number i between 2 and n — 1 is a pusp. We will now show
that n is a pusp.

We already know that n can be written as a product of primes,

n = p1p2 ... px. Since multiplication is commutative, we can assume
(by reordering if necessary) that p; > pp > --- > px. Now suppose
that n can be written as a product of primes in a different way, n =
q192---4q¢-

Setm = pap3...pk, sothat pym = n = q1492...49. Sincem € Z
we know that p1 | 4142 ...q¢. By Euclid’s Lemma, p; | q; where
1 <i < {. Butsince p; # 1 and g; is prime, we conclude that p; = g;.
By reordering the factors g4, 4, . ..,q¢, we can assume thati = 1 (so
p1=q1) and that g2 > g3 > - > gy.

Wenow have py...py =m =qp...q. Butsince2 <m <n—1, by
the inductive hypothesis, m is a pusp, so the sequences py, ..., py and
q2,...,q¢ are the same.

We conclude that any two ways of writing n as a product of a
weakly decreasing sequence of primes are actually the same, i.e., n is
a pusp. Induction complete. O

Congruence modulo n and modular arithmetic

Recall that there are an infinite number of integers, but computers
have finite memory. More generally, we might be working with a
very large set of possible numbers, but we would much prefer to do



our computations over a much smaller set.® One way to do this is via
modular arithmetic, which preserves some useful properties of normal
arithmetic over the integers.

Definition 8. For integers a,b,n withn > 0,2 = b mod n (a and b are
congruent modulo n) if and only if n | (a — D).

Note that n | (a — b) if and only if n | (b — a), so the definition is
symmetric in a and b.

Let us practice using this definition by proving the following use-
ful lemma:

Lemma 9. Let a,b,c,d, n be integers with n > 0 such that a = ¢ mod n
and b = d mod n. Then:

a) a+b=c+dmod n, and
b) ab = cd mod n.

Proof. Let a,b,c,d, n be integers with n > 0 such that 2 = ¢ mod n
andb=dmod n. Thenn | (a —c) and n | (b —d).

For the first part, Lemma 2 tells us thatn | ((a —¢) + (b—4d)) =
((a+b)—(c+4d)).Soa+b=c+dmod n.

The second part is slightly more difficult. From n | (a —c), we
know that there exists some integer k such that nk = a — ¢, and
fromn | (b —d), we know there exists some integer ¢ such that
nl = b — d. Rearranging, we geta = c+nkand b = d + n¢, so
ab = (c+nk)(d+nt) = cd+n(cl + dk + nkf). Since ¢l + dk+nkl € Z,
we conclude n | (ab — cd), i.e., ab = cd mod n. O

Definition 10. Given integers a and n, the congruence class of a mod-
ulo n is the set [a], = {b | a = bmod n}.7” Any element b € [a], is
called a representative of [al,.

Lemma g tells us thatif ¢ € [a], andd € [b],, thenc+d =
a-+bmodn,ie., [c+d], = [a+b], and similarly, cd = ab mod n,
i.e., [cd], = [ab],. In other words, no matter which representatives we
choose when adding or multiplying, we end up in the same equiva-
lence class at the end. This justifies the following definition:

Definition 11 (Modular Arithmetic).
a) [a]n + [b]n = [a + bl
b) [a]u[b]n = [ab]n

The definition of congruence class implies that if b € [a]n, then
[a], = [b]n. One common way to think about modular arithmetic is
by thinking of a number a as being “the same” as its remainder when
divided by n:
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¢ For example, storing data in a hash
table.

7 Congruence modulo # is an equivalence
relation over the integers, and you can
verify for yourself that the relation is
reflexive, symmetric, and transitive.
Equivalence relations over a set A split
the set into disjoint equivalence classes.
Congruence classes are a special case of
this more general phenomenon.
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Lemma 12. a = rem(a,n) mod #, i.e., [a], = [rem(a,n)],.

rem(a, n) is often referred to as the canonical representative of [a],,.
In particular, doing computations using rem(a, 1) can greatly simplify
computations. For example, considera = 79, b = 102, and n = 4.
Then rem(a,n) = 3 and rem(b,n) = 2. Instead of computing [79 +
102]4 = [181]4 = [1]4, we can compute [79]4 + [102]4 = [3]4 + [2]s =
[3 +2]4 = [5]4 = [1]4. Similarly, instead of computing [79]4[102]4 =
[79 - 102]4 = [8058]4 = [2]4, we can compute [79]4[102]4 = [3]4[2]s =
[6]4 = [2]4.
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