warm-up: simplify \((p \rightarrow q) \land (\neg p \rightarrow q)\)

\[= (\neg p \lor q) \land (p \lor q)\]

\[= (p \land \neg p) \lor q\]

\[= \text{false} \lor q\]

\[= q\]

Proof by cases:

\((p_1 \lor p_2 \lor \ldots \lor p_k) \land (p_1 \rightarrow q) \land (p_2 \rightarrow q) \land \ldots \land (p_k \rightarrow q)\)

implies

\(q\)

warm-up: simplify \(\neg p \rightarrow \text{false}\)

\[= p \lor \text{false} = p\]
case 7: Assume \(y \geq 0 \geq x \). Then \(|x| = -x \), \(|y| = y \), \(|xy| = -xy \). Hence, \(|x||y| = -xy = |xy| \).

Lecture 6: More Proofs
September 9, 2019

Definition 1. For a real number \(x \), \(|x| \) is defined as follows.

\[
|x| = \begin{cases}
 x & \text{if } x \geq 0 \\
 -x & \text{otherwise}
\end{cases}
\]

Problem 1. For real numbers \(x, y \), \(|xy| = |x||y| \).

We prove this by cases.

Case 1: Assume \(x, y > 0 \). Then: \(|x| = x \), \(|y| = y \) and \(|xy| = xy \). Therefore, \(|x||y| = xy = |xy| \).

Case 2: Assume \(xy < 0 \). Then \(|x| = -x \), \(|y| = -y \), \(|xy| = xy \). Therefore, \(|x||y| = (-x)(-y) = xy = |xy| \).

Case 3: Assume without loss of generality that \(x \geq 0 > y \). Then \(|x| = x \), \(|y| = -y \), \((xy) = -xy \). Therefore, \(|x||y| = x(-y) = -xy = |xy| \).

Problem 2. Prove that \(\sqrt{2} \) is irrational.

We prove this by contradiction. Assume that \(\sqrt{2} \) is rational. Let \(\sqrt{2} = \frac{a}{b} \) be a ratio in simplest form. \(a, b \in \mathbb{Z} \), \(a, b \neq 0 \), and \(a \) and \(b \) have no prime factors in common. Then:

\[
\sqrt{2} = \frac{a}{b} \Rightarrow \sqrt{2} b = a \Rightarrow 2b^2 = a^2 \Rightarrow a^2 \text{ is even}
\]

\(\Rightarrow a \text{ is even} \Rightarrow a = 2k \) for some \(k \in \mathbb{Z} \).

\[
\Rightarrow 2b^2 = (2k)^2 = 4k^2 \Rightarrow b^2 = 2k^2 \Rightarrow b^2 \text{ is even}
\]

\(\Rightarrow b \text{ is even} \)

\(\Rightarrow a \) being even and \(b \) being even contradicts our assumption that \(\frac{a}{b} \) is in simplest form. Hence, \(\sqrt{2} \) is irrational.
Problem 3. There are infinitely many primes.

We prove this by contradiction. Assume that there only finitely many primes. Let k be the number of primes and let p_1, \ldots, p_k the k prime numbers. Consider $m := (p_1 \cdots p_k) + 1$. m is not divisible by p_i for $i \in \{1, \ldots, k\}$. Therefore, m is a prime number greater than p_1, p_2, \ldots, p_k. This contradicts our assumption that there are only k primes. Therefore, there must infinitely many primes.

Problem 4. There are irrational numbers x and y such that x^y is rational.

\[w = \sqrt{2} \]

Case 1: w is rational. Then $x = y = \sqrt{2}$ satisfies the requirements.

Case 2: w is irrational. Consider $w = \sqrt{2}$

\[w^2 = (\sqrt{2} \cdot \sqrt{2})^2 = \sqrt{2} \cdot \sqrt{2} = \sqrt{2}^2 = 2 \]

In this case, $x := w$, $y := \sqrt{2}$ satisfies the requirements.
\[m = \left(\prod_{i=1}^{K} P_i \right) + 1 \]

\[m = P_1 \left(\prod_{i=2}^{K} P_i \right) + 1 \]

\[m = P_1 x S + 1 \]

remainder of \(m \) to \(P_1 \) is 1.