Lecture 22: Analysis of Algorithms

Date: October 23, 2019.

input: array \(A[1..n] \) of integers

for \(j = 2 \) to \(n \) do
 \(m = A[j] \)
 if \((m < A[j-1]) \) then
 \(A[j-1] = m \)
 return \(A[n] \)

input: array \(A[1..n] \) of integers

for \(j = 2 \) to \(n \) do
 \(m = A[j] \)
 \(i = j-1 \)
 while \((A[i] > m) \) do
 \(A[i+1] = A[i] \)
 \(A[i] = m \)
 \(i = i-1 \)
 return \(A[n] \)

Figure 1: Algorithm 1

Figure 2: Algorithm 2

Problem 1. Describe the computation of Algorithms 1 and 2 on input \(A = [4,5,3,2,1] \). What problems do Algorithms 1 and 2 solve?

Algorithm 1:

\[[4,5,3,2,1] \rightarrow [4,5,3,2,1], 5 \rightarrow [4,3,5,2,1], 3 \rightarrow [4,3,2,5,1], 2 \rightarrow [4,3,2,1,5] \]

Algorithm 2:

\[[4,5,3,2,1] \rightarrow [4,5,3,2,1], 5, 1, 2 \rightarrow [4,5,3,2,1], 3, 2, 3 \rightarrow [4,3,5,2,1], 3, 1, 3 \]

Measuring Efficiency of Algorithms.

- Running time
- Memory requirement
- Scalability
- Communication
- Simplicity
- Social

Question 1. What is the running time of Algorithms 1 and 2?

- Count "steps" in an algorithm
- Running time depends on the size of the input
- Running time depends on the input itself.

Running time is reported as a size of the input.

Running time is # steps taken on best input of size n.

Running time is # steps taken on worst input of size n.
Problem 2. Intel's P5 Pentium chip had a clock speed of 100 MHz. AMD's FX-8370 chip has a clock speed of 8.723 GHz.

1. How many steps does Algorithm 1 take on the worst case input of size n? \(\sum \limits_{j=0}^{\log_2(n-1)} 2^j + 2^j = 2 \left(\frac{n(n-1)}{2} \right) + 2(n-1) = 2(n-1)(n+1) \sim 2 \times 10^7 \) in the worst case?

2. How many steps does Algorithm 2 take on the worst case input of size n? \(\sum \limits_{j=0}^{\log_2(n-1)} 2^j + 2^j = 2 \left(\frac{n(n-1)}{2} \right) + 2(n-1) = 2(n-1)(n+1) \sim 2 \times 10^7 \) (in the worst case).

3. How much time does Algorithm 1 running on a Pentium take on an input of size 10^8 in the worst case? \(\sum \limits_{j=0}^{\log_2(n-1)} 2^j + 2^j = 2 \left(\frac{n(n-1)}{2} \right) + 2(n-1) = 2(n-1)(n+1) \sim 2 \times 10^7 \) in the worst case.

4. How much time does Algorithm 2 running on an AMD FX-8370 take on an input of size 10^8 in the worst case? \(\sum \limits_{j=0}^{\log_2(n-1)} 2^j + 2^j = 2 \left(\frac{n(n-1)}{2} \right) + 2(n-1) = 2(n-1)(n+1) \sim 2 \times 10^7 \) in the worst case.

\[\sum \limits_{j=0}^{\log_2(n-1)} 2^j + 2^j = 2 \left(\frac{n(n-1)}{2} \right) + 2(n-1) = 2(n-1)(n+1) \sim 2 \times 10^7 \] (in the worst case).

Big Oh. For \(f, g : \mathbb{N} \to \mathbb{N} \), we say that \(f = O(g) \) iff there is \(c, k \) such that for every \(n \geq k, f(n) \leq cg(n) \).

Problem 3. Show that \(\frac{ln^2}{x} = O(n^2) \) and \(n^2 = O\left(\frac{(n-1)n}{2}\right) \).

Proposition 1. For any \(k \), and \(a_0, a_1, \ldots, a_k \), \(\sum \limits_{i=0}^{k} a_i x^i = O(x^k) \).

Theta Notation. For function \(f, g : \mathbb{N} \to \mathbb{N} \), \(f = \Theta(g) \) iff \(f = O(g) \) and \(g = O(f) \).

Little Oh. For functions \(f, g : \mathbb{N} \to \mathbb{N} \), we say \(f = o(g) \) (\(f \) is asymptotically smaller than \(g \)) iff \(\lim \limits_{n \to \infty} \frac{f(n)}{g(n)} = 0 \).

Problem 4. Show that \(n^2 = o(2^n) \).