Lecture 10: More Induction

Date: September 20, 2019.

Induction: To prove \(\forall n \in \mathbb{N} \) such that \(n \geq b \), \(P(n) \)

- \(P(b) \) [Base Case]
- Prove for all \(n > b \), if \(P(b) \) AND \(P(b+1) \) AND \(\cdots \) AND \(P(n-1) \) then \(P(n) \) [Induction Step]

Proposition 1. For any \(n \geq 0 \), a \(2^n \times 2^n \) checker board with a “middle square” removed can be tiled using L-shaped triominoes.

Induction Predicate:
\(P(n) \): A \(2^n \times 2^n \) grid with middle removed can be tiled using triominoes.

Base Case: Need to prove \(P(0) \)
\(P(0) \) holds trivially.

Ind Hyp: Assume \(P(0), P(1), \ldots, P(n-1) \) hold.

Ind Step: Need to prove \(P(n) \).

\(Q(n) \): A \(2^n \times 2^n \) grid with any square removed can be tiled using L-shape tiles.

Base Case: \(Q(0) \) holds trivially.

Ind Hyp: Assume \(Q(0), Q(1), \ldots, Q(n-1) \) hold.

Ind Step: To prove \(Q(n) \).

By \(Q(n) \), \(U \) by \(Q(n-1) \).

By Ind Hyp, \(R \) with corner removed can be tiled.

By induction principle \(\forall n \), \(Q(n) \)
That implies \(\forall n \), \(P(n) \)
F(0) = 0, F(1) = 1, F(2) = 1, F(3) = 2, F(4) = 3, F(5) = 5, F(6) = 8, F(7) = 13, ...

Fibonacci Numbers: Numbers obtained by the following recursive process: F(0) = 0, F(1) = 1, and
F(n) = F(n-1) + F(n-2) when n > 1.

Proposition 2. For any n ≥ 0, F(n) is even IFF F(n+3) is even.

Induction Predicate: P(n) := F(n) is even IFF F(n+3) is even.

Base Case: n = 0: F(0) = 0 is even IFF F(3) = 2 is even.

Ind. Hyp.: P(0), P(1), ..., P(n-1) hold.

Ind. Step: Prove F(n) is even IFF F(n+3) is even.

F(n) is even <=> F(n-1) + F(n) is even.

 <=> [F(n-1) is even IFF F(n-2) is even]

 <=> [F(n+1) is even IFF F(n+2) is even] (Ind. Hyp.)

 <=> F(n+1) + F(n+2) is even

 <=> F(n+3) is even

Theorem 3. Every integer greater than 1 is a product of primes.

(Weak) Induction: To prove \(\forall n \in \mathbb{N} \) such that \(n \geq b \), P(n)

- Prove P(b) [Base Case]

- Prove for all \(n > b \), if P(n-1) then P(n) [Induction Step]