Lecture 7: Sets

Date: September 11, 2019.

Set: An unordered collection of objects.

$$\begin{split} & \emptyset = \{\} & & \mathbb{N} \\ & A = \{0, 2, 4, 6\} & & \mathbb{Z} \\ & B = \{\mathsf{B}, \mathsf{C}, \mathsf{D}, \mathsf{E}, \mathsf{F}, \mathsf{J}, \mathsf{K}, \mathsf{P}, \mathsf{Q}, \mathsf{R}, \mathsf{S}, \mathsf{T}, \mathsf{V}\} & & \mathbb{Q} \\ & C = \{\{0\}, \{2\}, \{4\}, \{6\}\} & & \mathbb{R} \\ & D = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\} & & \mathbb{C} \\ \end{split}$$

Membership: A set is defined by its **members**. $x \in A$ means "x is a member of A".

Question 1. Which of the following are true?

- 1. (a) $0 \in \emptyset$, (b) $\emptyset \in \emptyset$, (c) $A \in \emptyset$?
- 2. (a) $0 \in A$, (b) $\{0\} \in A$, (c) $\emptyset \in A$?
- 3. (a) $0 \in C$, (b) $\{0\} \in C$, (c) $\{\{0\}\} \in C$?
- 4. (a) $\emptyset \in D$, (b) $\{\emptyset\} \in D$, (c) $\{\{\emptyset\}\} \in D$?

Containment: $A \subseteq B$ (A is contained in B) iff $\forall x [x \in A | \mathsf{IMPLIES} | x \in B]$.

Question 2. Which of the following are true?

$$\begin{split} & \emptyset \subseteq \emptyset & \emptyset \subseteq \mathbb{N} \\ & \mathbb{N} \subseteq \mathbb{N} \\ & C \subseteq A & A \subseteq C \end{split}$$

Set Builder Notation: $\{x \in A \mid P(x)\}$ defines the set of elements in A such that P(x) is true.

$$E = \{n \in \mathbb{N} \mid n \text{ is even}\} = \{n \in \mathbb{N} \mid \exists k \in \mathbb{N} (n = 2k)\}$$
$$F = \{x \in \mathbb{R} \mid \exists a, b \in \mathbb{Z} (b \neq 0) \text{ AND } (x = \frac{a}{b})\} = \mathbb{Q}$$

Set Operations: Let X and Y be sets.

$$\begin{split} X \cup Y &= \{x \mid (x \in X) \text{ OR } (x \in Y)\} \\ X \cap Y &= \{x \mid (x \in X) \text{ AND } (x \in Y)\} \\ X - Y &= \{x \mid (x \in X) \text{ AND } (x \notin Y)\} \\ \overline{X} &= U - X, \text{ where } U \text{ is the "universal set/domain of discourse" (when understood)} \end{split}$$

Question 3. What is

 $A \cup C$ $A \cap C$ A - C $C \cap \emptyset$ $C \cup \emptyset$

Cartesian Product: $X \times Y$ consists of all ordered pairs (x, y) where $x \in X$ and $y \in Y$, i.e., $X \times Y = \{(x, y) \mid (x \in X) \text{ AND } (y \in Y)\}.$

Example 1. $\{0, 1, 2\} \times \{a, b, c\} = \{a, b, c\} \times \{0, 1, 2\} = \emptyset \times D = A \times C =$

Power Set: $pow(X) = \{Y \mid Y \subseteq X\}$

Question 4. pow($\{0, 1, 2\}$) = pow(\emptyset) is (a) \emptyset , (b) $\{\emptyset\}$, (c) $\{\emptyset, \{\emptyset\}\}$, (d) not defined. pow($\{\emptyset\}$) is (a) \emptyset , (b) $\{\emptyset\}$, (c) $\{\emptyset, \{\emptyset\}\}$, (d) not defined.

Set Equality: Two sets X and Y are equal if they have the same elements, i.e., for every $x, x \in X$ IFF $x \in Y$, i.e., $X \subseteq Y$ AND $Y \subseteq X$.

Problem 1. Prove that for any sets X, Y, Z,

$$X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z).$$

Cardinality (of finite sets): |X| = number of elements in X.

Example 2. $|\emptyset| = |A| = |D| = |\{0, 1, 1, 2, 2\}| = |A \times B| =$