Lecture 7: Sets

Date: September 11, 2019.

Set: An unordered collection of objects.

$$
\begin{array}{ll}
\emptyset=\{ \} & \mathbb{N} \\
A=\{0,2,4,6\} & \mathbb{Z} \\
B=\{\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{~F}, \mathrm{~J}, \mathrm{~K}, \mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{~S}, \mathrm{~T}, \mathrm{~V}\} & \mathbb{Q} \\
C=\{\{0\},\{2\},\{4\},\{6\}\} & \mathbb{R} \\
D=\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\} & \mathbb{C}
\end{array}
$$

Membership: A set is defined by its members. $x \in A$ means " x is a member of A ".
Question 1. Which of the following are true?

1. (a) $0 \in \emptyset$, (b) $\emptyset \in \emptyset$, (c) $A \in \emptyset$?
2. (a) $0 \in A$, (b) $\{0\} \in A$, (c) $\emptyset \in A$?
3. (a) $0 \in C$, (b) $\{0\} \in C$, (c) $\{\{0\}\} \in C$?
4. (a) $\emptyset \in D$, (b) $\{\emptyset\} \in D$, (c) $\{\{\emptyset\}\} \in D$?

Containment: $A \subseteq B(A$ is contained in $B)$ iff $\forall x[x \in A$ IMPLIES $x \in B]$.
Question 2. Which of the following are true?

$$
\begin{array}{ll}
\emptyset \subseteq \emptyset & \emptyset \subseteq \mathbb{N} \\
\mathbb{N} \subseteq \mathbb{N} & \\
C \subseteq A & A \subseteq C
\end{array}
$$

Set Builder Notation: $\{x \in A \mid P(x)\}$ defines the set of elements in A such that $P(x)$ is true.

$$
\begin{aligned}
& E=\{n \in \mathbb{N} \mid n \text { is even }\}=\{n \in \mathbb{N} \mid \exists k \in \mathbb{N}(n=2 k)\} \\
& F=\left\{x \in \mathbb{R} \mid \exists a, b \in \mathbb{Z}(b \neq 0) \text { AND }\left(x=\frac{a}{b}\right)\right\}=\mathbb{Q}
\end{aligned}
$$

Set Operations: Let X and Y be sets.

$$
\begin{aligned}
& X \cup Y=\{x \mid(x \in X) \text { OR }(x \in Y)\} \\
& X \cap Y=\{x \mid(x \in X) \text { AND }(x \in Y)\} \\
& X-Y=\{x \mid(x \in X) \text { AND }(x \notin Y)\} \\
& \bar{X}=U-X, \text { where } U \text { is the "universal set/domain of discourse" (when understood) }
\end{aligned}
$$

Question 3. What is
$A \cup C$
$A \cap C$
$A-C$
$C \cap \emptyset$
$C \cup \emptyset$

Cartesian Product: $X \times Y$ consists of all ordered pairs (x, y) where $x \in X$ and $y \in Y$, i.e., $X \times Y=$ $\{(x, y) \mid(x \in X)$ AND $(y \in Y)\}$.
Example 1. $\{0,1,2\} \times\{a, b, c\}=$
$\{a, b, c\} \times\{0,1,2\}=$
$\emptyset \times D=$
$A \times C=$

Power Set: $\operatorname{pow}(X)=\{Y \mid Y \subseteq X\}$
Question 4. $\operatorname{pow}(\{0,1,2\})=$
$\operatorname{pow}(\emptyset)$ is (a) \emptyset, (b) $\{\emptyset\}$, (c) $\{\emptyset,\{\emptyset\}\}$, (d) not defined.
$\operatorname{pow}(\{\emptyset\})$ is (a) $\emptyset,(\mathrm{b})\{\emptyset\}$, (c) $\{\emptyset,\{\emptyset\}\}$, (d) not defined.

Set Equality: Two sets X and Y are equal if they have the same elements, i.e., for every $x, x \in X$ IFF $x \in Y$, i.e., $X \subseteq Y$ AND $Y \subseteq X$.
Problem 1. Prove that for any sets X, Y, Z,

$$
X \cap(Y \cup Z)=(X \cap Y) \cup(X \cap Z)
$$

Cardinality (of finite sets): $|X|=$ number of elements in X.
Example 2. $|\emptyset|=\quad|A|=\quad|D|=\quad|\{0,1,1,2,2\}|=$ $|A \times B|=$

