Lecture 24: Summing Series

Date: October 30, 2019.

Arithmetic Progression. A sequence of (real) numbers such that difference between successive elements is the same. It is of the form

$$
a, a+d, a+2 d, \ldots a+n d, \ldots
$$

a is the initial term and d is the common difference.
Proposition 1. Let $a_{1}, a_{2}, \ldots a_{n}$ be an arithmetic progression with initial term a and common difference d. Then $a_{i}=a+(i-1) d$, and

$$
\sum_{i=1}^{n} a_{i}=\sum_{i=1}^{n}(a+(i-1) d)=\frac{n\left(a_{1}+a_{n}\right)}{2}=\frac{n(2 a+(n-1) d)}{2}
$$

Corollary 2. $\sum_{i=1}^{n} i=n(n+1) / 2$

Geometric Progression. A sequence of (real) numbers such the ratio of successive elements is the same. It is of the form

$$
a, a r, a r^{2}, \ldots a r^{n}, \ldots
$$

a is the initial term and r is the common ratio.
Proposition 3. Let $a_{1}, a_{2}, \ldots a_{n}$ be a geometric progression with initial term a and common ratio r. Then $a_{i}=a r^{i-1}$. If $r=1, \sum_{i=1}^{n} a_{i}=n a$. If $r \neq 1$,

$$
\sum_{i=1}^{n} a_{i}=\sum_{i=1}^{n} a r^{i-1}=\frac{a\left(r^{n}-1\right)}{r-1}
$$

Proposition 4. If $|r|<1$ then

$$
\sum_{i=0}^{\infty} a r^{i}=\frac{a}{1-r}
$$

Proposition 5.

$$
\sum_{i=1}^{n} i x^{i}=\frac{x\left(1-x^{n}\right)}{(1-x)^{2}}-\frac{n x^{n+1}}{1-x}
$$

