String definitions and induction

Strings

Recursive definition of Strings: Let A be a non-empty set of characters (or letters, symbols). A is called an alphabet. The set of strings over alphabet A, denoted A^* is defined as follows.

- **Base Case:** The empty string λ is in A^*.
- **Constructor Case:** If $a \in A$ and $s \in A^*$ then $\langle a, s \rangle \in A^*$.

Length of Strings: Length $|s|$ of a string s is defined recursively as

- **Base Case:** $|\lambda|$ is defined to be 0
- **Constructor Case:** $|(a, s)|$ is $1 + |s|$.

Concatenation: The concatenation of string s with t, denoted $s \cdot t$ is recursively defined as

- **Base Case:** $\lambda \cdot t$ is t
- **Constructor Case:** $\langle a, s \rangle \cdot t$ is $\langle a, s \cdot t \rangle$.

Proposition 1. $s \cdot \lambda = s$ for all $s \in A^*$.

Proposition 2. For all $s, t \in A^*$, $|s \cdot t| = |s| + |t|$.
Structural Induction: Let P be a predicate on a recursively defined data type R. If

- $P(b)$ is true for each base case element $b \in R$, and
- for all k-argument constructors c

 $[P(r_1) \text{ AND } P(r_2) \text{ AND } \cdots \text{ AND } P(r_k)] \text{ IMPLIES } P(c(r_1, r_2, \ldots, r_k))$

 for all $r_1, r_2, \ldots, r_k \in R$
then $P(r)$ is true for all $r \in R$.

Well matched Brackets

Definition: The set of well-match strings, RecMatch, can be defined as

- **Base Case:** $\lambda \in \text{RecMatch}$
- **Constructor Case:** If $s, t \in \text{RecMatch}$ then $\langle[,\lambda] \cdot s \cdot [,\lambda]\rangle \cdot t \in \text{RecMatch}$.

Number of characters: $\#_c(s)$ is the number of occurrences of c in s, and can be defined recursively as

- **Base Case:** $\#_c(\lambda) = 0$
- **Constructor Case:** $\#_c(\langle a, s \rangle) = \#_c(s)$ if $a \neq c$, and $\#_c(\langle a, s \rangle) = 1 + \#_c(s)$ if $a = c$.

Proposition 3. Every string in RecMatch has an equal number of $[$ and $]$ symbols.