LECTURE 15: RECURSIVE DATA TYPES, DEFINITIONS, AND
STRUCTURAL INDUCTION

Date: October 4, 2019.

Strings

Recursive definition of Strings: Let A be a non-empty set of characters (or letters, symbols). A is called
an alphabet. The set of strings over alphabet A, denoted A* is defined as follows.

e Base Case: The empty string A is in A*.

e Constructor Case: If a € A and s € A* then (a,s) € A*.

Length of Strings: Length |s| of a string s is defined recursively as
e Base Case: |)| is defined to be 0

e Constructor Case: [{(a,s)|is 1+ |s|.

Concatenation: The concatenation of string s with ¢, denoted s - ¢ is recursively defined as

e Base Case: \-tist

e Constructor Case: (a,s)-tis (a,s-t).

Proposition 1. s- A= s for all s € A*.

Proposition 2. For all s,t € A*, |s-t| = |s| + |t|.



Structural Induction: Let P be a predicate on a recursively defined data type R. If

e P(b) is true for each base case element b € R, and

e for all k-argument constructors c
[P(r1) AND P(r3) AND --- AND P(ry)] IMPLIES P(c(r1,72,...7%))

for all r1,7r9,...7: € R

then P(r) is true for all r € R.

Well matched Brackets
Definition: The set of well-match strings, RecMatch, can be defined as
e Base Case: )\ € RecMatch

e Constructor Case: If s,t € RecMatch then ([, A) - s- (], A) - ¢ € RecMatch.

Number of characters: #.(s) is the number of occurences of ¢ in s, and can be defined recursively as

e Base Case: #.(\) =0
e Constructor Case: #.({a,s)) = #.(s) if a # ¢, and #.((a,s)) =1+ #.(s) if a = c.

Proposition 3. Every string in RecMatch has an equal number of [ and | symbols.



