Lecture 15: Recursive Data Types, Definitions, and Structural Induction

Date: October 4, 2019.

Strings

Recursive definition of Strings: Let A be a non-empty set of characters (or letters, symbols). A is called an alphabet. The set of strings over alphabet A, denoted A^{*} is defined as follows.

- Base Case: The empty string λ is in A^{*}.
- Constructor Case: If $a \in A$ and $s \in A^{*}$ then $\langle a, s\rangle \in A^{*}$.

Length of Strings: Length $|s|$ of a string s is defined recursively as

- Base Case: $|\lambda|$ is defined to be 0
- Constructor Case: $|\langle a, s\rangle|$ is $1+|s|$.

Concatenation: The concatenation of string s with t, denoted $s \cdot t$ is recursively defined as

- Base Case: $\lambda \cdot t$ is t
- Constructor Case: $\langle a, s\rangle \cdot t$ is $\langle a, s \cdot t\rangle$.

Proposition 1. $s \cdot \lambda=s$ for all $s \in A^{*}$.

Proposition 2. For all $s, t \in A^{*},|s \cdot t|=|s|+|t|$.

Structural Induction: Let P be a predicate on a recursively defined data type R. If

- $P(b)$ is true for each base case element $b \in R$, and
- for all k-argument constructors \mathbf{c}

$$
\left[P\left(r_{1}\right) \text { AND } P\left(r_{2}\right) \text { AND } \cdots \text { AND } P\left(r_{k}\right)\right] \text { IMPLIES } P\left(\mathbf{c}\left(r_{1}, r_{2}, \ldots r_{k}\right)\right)
$$

for all $r_{1}, r_{2}, \ldots r_{k} \in R$
then $P(r)$ is true for all $r \in R$.

Well matched Brackets

Definition: The set of well-match strings, RecMatch, can be defined as

- Base Case: $\lambda \in$ RecMatch
- Constructor Case: If $s, t \in \operatorname{RecMatch}$ then $\langle[, \lambda\rangle \cdot s \cdot], \lambda\rangle \cdot t \in \operatorname{Rec}$ Match.

Number of characters: $\#_{c}(s)$ is the number of occurences of c in s, and can be defined recursively as

- Base Case: $\#_{c}(\lambda)=0$
- Constructor Case: $\#_{c}(\langle a, s\rangle)=\#_{c}(s)$ if $a \neq c$, and $\#_{c}(\langle a, s\rangle)=1+\#_{c}(s)$ if $a=c$.

Proposition 3. Every string in RecMatch has an equal number of [and] symbols.

