
Lecture 15: Recursive Data Types, Definitions, and
Structural Induction

Date: October 4, 2019.

Strings

Recursive definition of Strings: Let A be a non-empty set of characters (or letters, symbols). A is called
an alphabet. The set of strings over alphabet A, denoted A∗ is defined as follows.

• Base Case: The empty string λ is in A∗.

• Constructor Case: If a ∈ A and s ∈ A∗ then 〈a, s〉 ∈ A∗.

Length of Strings: Length |s| of a string s is defined recursively as

• Base Case: |λ| is defined to be 0

• Constructor Case: |〈a, s〉| is 1 + |s|.

Concatenation: The concatenation of string s with t, denoted s · t is recursively defined as

• Base Case: λ · t is t

• Constructor Case: 〈a, s〉 · t is 〈a, s · t〉.

Proposition 1. s · λ = s for all s ∈ A∗.

Proposition 2. For all s, t ∈ A∗, |s · t| = |s|+ |t|.

1

Structural Induction: Let P be a predicate on a recursively defined data type R. If

• P (b) is true for each base case element b ∈ R, and

• for all k-argument constructors c

[P (r1) AND P (r2) AND · · · AND P (rk)] IMPLIES P (c(r1, r2, . . . rk))

for all r1, r2, . . . rk ∈ R
then P (r) is true for all r ∈ R.

Well matched Brackets

Definition: The set of well-match strings, RecMatch, can be defined as

• Base Case: λ ∈ RecMatch

• Constructor Case: If s, t ∈ RecMatch then 〈[, λ〉 · s · 〈], λ〉 · t ∈ RecMatch.

Number of characters: #c(s) is the number of occurences of c in s, and can be defined recursively as

• Base Case: #c(λ) = 0

• Constructor Case: #c(〈a, s〉) = #c(s) if a 6= c, and #c(〈a, s〉) = 1 + #c(s) if a = c.

Proposition 3. Every string in RecMatch has an equal number of [and] symbols.

2

