LECTURE 15: RECURSIVE DATA TYPES, DEFINITIONS, AND STRUCTURAL INDUCTION

Date: October 4, 2019.

Strings

Recursive definition of Strings: Let A be a non-empty set of *characters* (or *letters*, *symbols*). A is called an *alphabet*. The set of *strings* over alphabet A, denoted A^* is defined as follows.

- **Base Case:** The empty string λ is in A^* .
- Constructor Case: If $a \in A$ and $s \in A^*$ then $\langle a, s \rangle \in A^*$.

Length of Strings: Length |s| of a string s is defined recursively as

- **Base Case:** $|\lambda|$ is defined to be 0
- Constructor Case: $|\langle a, s \rangle|$ is 1 + |s|.

Concatenation: The concatenation of string s with t, denoted $s \cdot t$ is recursively defined as

- Base Case: $\lambda \cdot t$ is t
- Constructor Case: $\langle a, s \rangle \cdot t$ is $\langle a, s \cdot t \rangle$.

Proposition 1. $s \cdot \lambda = s$ for all $s \in A^*$.

Proposition 2. For all $s, t \in A^*$, $|s \cdot t| = |s| + |t|$.

Structural Induction: Let P be a predicate on a recursively defined data type R. If

- P(b) is true for each base case element $b \in R$, and
- for all k-argument constructors **c**

 $[P(r_1) \text{ AND } P(r_2) \text{ AND } \cdots \text{ AND } P(r_k)] \text{ IMPLIES } P(\mathbf{c}(r_1, r_2, \dots r_k))$

for all $r_1, r_2, \ldots r_k \in R$

then P(r) is true for all $r \in R$.

Well matched Brackets

Definition: The set of well-match strings, RecMatch, can be defined as

- Base Case: $\lambda \in \mathsf{RecMatch}$
- Constructor Case: If $s, t \in \mathsf{RecMatch}$ then $\langle [, \lambda \rangle \cdot s \cdot \langle], \lambda \rangle \cdot t \in \mathsf{RecMatch}$.

Number of characters: $\#_c(s)$ is the number of occurrences of c in s, and can be defined recursively as

- Base Case: $\#_c(\lambda) = 0$
- Constructor Case: $\#_c(\langle a, s \rangle) = \#_c(s)$ if $a \neq c$, and $\#_c(\langle a, s \rangle) = 1 + \#_c(s)$ if a = c.

Proposition 3. Every string in RecMatch has an equal number of [and] symbols.