Lecture 6: More Proofs

September 9, 2019

Definition 1. For a real number $x,|x|$ is defined as follows.

$$
|x|= \begin{cases}x & \text { if } x \geq 0 \\ -x & \text { otherwise }\end{cases}
$$

Problem 1. For real numbers $x, y,|x y|=|x||y|$.

Problem 2. Prove that $\sqrt{2}$ is irrational.

Problem 3. There are infinitely many primes.

Problem 4. There are irrational numebrs x and y such that x^{y} is rational.

